当前位置: 首页 > news >正文

谷歌网站怎么打不开seo新闻

谷歌网站怎么打不开,seo新闻,定制网站开发系统,免费发布黄页广告网站文章目录 1.构建神经网络2. 神经网络的优缺点 1.构建神经网络 在 pytorch 中定义深度神经网络其实就是层堆叠的过程,继承自nn.Module,实现两个方法: __init__方法中定义网络中的层结构,主要是全连接层,并进行初始化。…

文章目录

    • 1.构建神经网络
    • 2. 神经网络的优缺点

1.构建神经网络

在 pytorch 中定义深度神经网络其实就是层堆叠的过程,继承自nn.Module,实现两个方法:

  • __init__方法中定义网络中的层结构,主要是全连接层,并进行初始化。
  • forward方法,在实例化模型的时候,底层会自动调用该函数。该函数中可以定义学习率,为初始化定义的layer传入数据等。

我们来构建如下图所示的神经网络模型:
在这里插入图片描述

编码设计如下:

  1. 第1个隐藏层:权重初始化采用标准化的xavier初始化 激活函数使用sigmoid。
  2. 第2个隐藏层:权重初始化采用标准化的He初始化 激活函数采用relu。
  3. out输出层线性层 假若二分类,采用softmax做数据归一化。
# 创建神经网络
import torch
import torch.nn as nn
# pip install torchsummary
from torchsummary import summary # 计算模型参数,查看模型结构 pip install torchsummary
# 创建神经网络模型类
class Model(nn.Module):# 初始化属性值def __init__(self):# 调用父类的初始化属性值super(Model, self).__init__()# 创建第一个隐藏层模型,3个输入特征,3个输出特征self.linear1 = nn.Linear(3, 3)# 初始化权重 xavier 均匀分布初始化nn.init.xavier_uniform_(self.linear1.weight)# 创建第二个隐藏层,3个输入特征(上一层的输出特征),2个输出特征self.linear2 = nn.Linear(3, 2)# 初始化权重 kaiming 正太分布初始化nn.init.kaiming_normal_(self.linear2.weight)# 创建输出层模型self.out = nn.Linear(2, 2)# 创建向前传播方法,自动执行 forward()方法def forward(self, x):# 数据经过第一个线性层x = self.linear1(x)# 使用 sigmoid 激活函数x = torch.sigmoid(x)# 数据经过第二个线性层x = self.linear2(x)# 使用 relu 激活函数x = torch.relu(x)# 数据经过输出层x = self.out(x)# 使用 softmax 激活函数# dim=-1:每一维度行数据相机为1x = torch.softmax(x, dim=-1)return xif __name__ == '__main__':# 实例化model对象model = Model()# 随机产生数据data = torch.randn(5,3)print('data.shape',data.shape)# 数据经过神经网络模型训练out = model(data)print('out.shape',out.shape)# 计算模型参数# 计算每层每个神经元的 w 和 b 个数总和summary(model,input_size=(3,),batch_size=5)# 查看模型参数print("======查看模型参数w和b======")for name, param in model.named_parameters():print(name, param)
  • 神经网络的输入数据是为[batch_size, in_features]的张量经过网络处理后获取了[batch_size, out_features]的输出张量。

  • 在上述例子中,batch_size=5, in_features=3,out_features=2,结果如下所示:

    data.shape torch.Size([5, 3])
    out.shape torch.Size([5, 2])
    

    模型参数输出:

    ----------------------------------------------------------------Layer (type)               Output Shape         Param #
    ================================================================Linear-1                     [5, 3]              12Linear-2                     [5, 2]               8Linear-3                     [5, 2]               6
    ================================================================
    Total params: 26
    Trainable params: 26
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.00
    Forward/backward pass size (MB): 0.00
    Params size (MB): 0.00
    Estimated Total Size (MB): 0.00
    ----------------------------------------------------------------
    ======查看模型参数w和b======
    linear1.weight Parameter containing:
    tensor([[ 0.3857,  0.4809, -0.0346],[ 0.3645,  0.2803, -0.6291],[ 0.1999, -0.6617,  0.7724]], requires_grad=True)
    linear1.bias Parameter containing:
    tensor([0.3084, 0.5636, 0.4501], requires_grad=True)
    linear2.weight Parameter containing:
    tensor([[ 0.1063,  0.7494,  0.4311],[-1.4152,  0.3396, -0.8590]], requires_grad=True)
    linear2.bias Parameter containing:
    tensor([-0.3771,  0.2937], requires_grad=True)
    out.weight Parameter containing:
    tensor([[-0.6012,  0.4727],[-0.2953, -0.5854]], requires_grad=True)
    out.bias Parameter containing:
    tensor([-0.3271,  0.4940], requires_grad=True)
    

模型参数的计算:

  1. 以第一个隐层为例:该隐层有3个神经元,每个神经元的参数为:4个(w1,w2,w3,b1),所以一共用3x4=12个参数。
  2. 输入数据和网络权重是两个不同的事儿!对于初学者理解这一点十分重要,要分得清。
    在这里插入图片描述

2. 神经网络的优缺点

  1. 优点
    ➢ 精度高,性能优于其他的机器学习算法,甚至在某些领域超过了人类。
    ➢ 可以近似任意的非线性函数。
    ➢ 近年来在学界和业界受到了热捧,有大量的框架和库可供调。
  2. 缺点
    ➢ 黑箱,很难解释模型是怎么工作的。
    ➢ 训练时间长,需要大量的计算资源。
    ➢ 网络结构复杂,需要调整超参数。
    ➢ 部分数据集上表现不佳,容易发生过拟合。
http://www.khdw.cn/news/67294.html

相关文章:

  • 岳阳做网站的公司seo有些什么关键词
  • 做网站一般需要多久电脑培训机构哪个好
  • 厦门网站建设首选厦门一联网络优化关键词的方法包括
  • javascript怎么读seo推广哪家服务好
  • 深圳网站建设费用seo的搜索排名影响因素有
  • 怎么为自己做的网站申请域名推广链接点击器app
  • 做一样的模板网站会被告侵权吗百度排行榜前十名
  • wordpress buddypress手机网站怎么优化关键词
  • 做网站和网站页面设计搜索引擎排名
  • 无锡抖音代运营公司优化大师使用心得
  • 在东莞做网站电商平台怎么加入
  • 北京网站定制开发高端企业网站建设
  • dede后台删了 网站还有深圳有实力的seo公司
  • 供灯放生网站开发河南今日头条最新消息
  • 小程序要先做网站专业培训大全
  • 我的世界做皮肤壁纸网站东莞网站开发公司
  • 最专业的网站建设收费怎么做百度网页推广
  • 网站选项怎么做肇庆seo
  • asp 手机网站深圳市社会组织总会
  • 服务器租用大概多少钱seo的内容有哪些
  • 豪利777的seo综合查询上海网站排名优化
  • 怎么查一个网站有没有做301谷歌网站
  • 刘晓忠 网站建设国外域名购买
  • 简述织梦网站上传及安疫情最新资讯
  • 网站买东西第三方怎么做国家优化防控措施
  • 网站开发php支付接口百度引流推广怎么做
  • 邵阳 做网站公司seo外链专员
  • 加盟网站建设案例欣赏百度推广代理商加盟
  • 郑州大学科技园手机网站建设大数据营销
  • 南宁 网站建设 公司培训心得总结