当前位置: 首页 > news >正文

简述织梦网站上传及安疫情最新资讯

简述织梦网站上传及安,疫情最新资讯,龙华网站制作要多少钱,合肥 电子商务 网站建设这是一个基于 PyTorch 和 PyQt5 的物体识别程序,使用 Faster R-CNN 模型来识别图片中的物体,并通过图形界面展示识别结果。 1.用户界面 主窗口:包含加载图片、识别、清除按钮,以及图片显示区域和结果展示区域。 图片显示&#…

      这是一个基于 PyTorch 和 PyQt5 的物体识别程序,使用 Faster R-CNN 模型来识别图片中的物体,并通过图形界面展示识别结果。

1.用户界面

  • 主窗口:包含加载图片、识别、清除按钮,以及图片显示区域和结果展示区域。
  • 图片显示:支持显示原始图片和处理后的图片(标注了识别结果)。
  • 结果显示:显示识别到的物体类别和置信度。

2. 核心功能

  • 加载图片:用户可以通过点击“加载图片”按钮选择本地图片文件。
  • 物体识别:使用 Faster R-CNN 模型识别图片中的物体。
  • 标注结果:在图片上绘制矩形框,并标注物体类别和置信度。
  • 显示结果:在界面中显示所有识别到的物体及其类别和置信度。
  • 清除显示:点击“清除”按钮,清空图片和结果显示区域。

3. 技术细节

  • Faster R-CNN 模型:使用 PyTorch 提供的预训练 Faster R-CNN 模型(基于 COCO 数据集)。
  • 图片处理:使用 OpenCV 进行图片的加载、格式转换和标注。
  • 类别映射:将模型输出的类别 ID 映射为 COCO 数据集的类别名称(如 person, car, dog 等)。
  • 置信度过滤:只显示置信度大于 0.5 的物体。
import sys
import cv2
import torch
import torchvision
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton, QLabel, QFileDialog)
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qtclass ObjectDetector(QMainWindow):def __init__(self):super().__init__()self.setWindowTitle("物体识别系统")self.setGeometry(100, 100, 800, 600)# 初始化UIself.init_ui()# 加载预训练的Faster R-CNN模型self.model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights.DEFAULT)self.model.eval()# COCO数据集类别名称self.coco_class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush']# 验证 COCO 和模型匹配性print(f"COCO 类别数量: {len(self.coco_class_names)}")  # 应为 80def init_ui(self):"""初始化用户界面"""# 创建主窗口部件和布局central_widget = QWidget()self.setCentralWidget(central_widget)layout = QVBoxLayout(central_widget)# 创建顶部按钮区域button_layout = QHBoxLayout()# 添加按钮self.btn_load = QPushButton("加载图片", self)self.btn_load.clicked.connect(self.load_image)button_layout.addWidget(self.btn_load)self.btn_detect = QPushButton("识别", self)self.btn_detect.clicked.connect(self.detect_objects)button_layout.addWidget(self.btn_detect)self.btn_clear = QPushButton("清除", self)self.btn_clear.clicked.connect(self.clear_display)button_layout.addWidget(self.btn_clear)layout.addLayout(button_layout)# 创建显示区域display_layout = QHBoxLayout()# 原始图片显示self.image_label = QLabel()self.image_label.setMinimumSize(400, 400)self.image_label.setAlignment(Qt.AlignCenter)self.image_label.setStyleSheet("border: 2px solid black;")display_layout.addWidget(self.image_label)# 处理后的图片显示self.processed_label = QLabel()self.processed_label.setMinimumSize(400, 400)self.processed_label.setAlignment(Qt.AlignCenter)self.processed_label.setStyleSheet("border: 2px solid black;")display_layout.addWidget(self.processed_label)layout.addLayout(display_layout)# 结果显示self.result_label = QLabel("识别结果将在这里显示")self.result_label.setAlignment(Qt.AlignCenter)self.result_label.setStyleSheet("""QLabel {font-size: 24px;margin: 20px;padding: 10px;background-color: #f0f0f0;border-radius: 5px;}""")layout.addWidget(self.result_label)# 初始化变量self.current_image = Noneself.processed_image = Nonedef load_image(self):"""加载图片"""file_name, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg *.bmp)")if file_name:# 读取图片self.current_image = cv2.imread(file_name)if self.current_image is None:self.result_label.setText("无法加载图片!")return# 显示原始图片self.display_image(self.current_image, self.image_label)def display_image(self, image, label):"""显示图片到指定的标签"""height, width = image.shape[:2]bytes_per_line = 3 * widthq_image = QImage(image.data, width, height, bytes_per_line, QImage.Format_RGB888).rgbSwapped()pixmap = QPixmap.fromImage(q_image)scaled_pixmap = pixmap.scaled(label.size(), Qt.KeepAspectRatio)label.setPixmap(scaled_pixmap)def detect_objects(self):"""识别图片中的物体"""if self.current_image is None:self.result_label.setText("请先加载图片!")return# 将OpenCV的BGR图片转换为RGBimage_rgb = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB)# 将NumPy数组转换为PyTorch Tensorimage_tensor = torch.from_numpy(image_rgb).permute(2, 0, 1).float() / 255.0# 添加batch维度image_tensor = image_tensor.unsqueeze(0)# 使用Faster R-CNN模型进行物体识别with torch.no_grad():results = self.model(image_tensor)# 打印模型输出的类别 IDprint(f"模型输出的类别 ID: {results[0]['labels']}")# 处理识别结果self.processed_image = self.current_image.copy()for box, label, score in zip(results[0]['boxes'], results[0]['labels'], results[0]['scores']):if score > 0.5:  # 只显示置信度大于0.5的物体if 1 <= label <= 80:  # 检查类别 ID 是否在有效范围内x1, y1, x2, y2 = map(int, box)cv2.rectangle(self.processed_image, (x1, y1), (x2, y2), (0, 255, 0), 2)class_name = self.coco_class_names[label - 1]  # COCO类别ID从1开始cv2.putText(self.processed_image, f"{class_name}: {score:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)else:print(f"警告: 无效的类别 ID: {label}")# 显示处理后的图片self.display_image(self.processed_image, self.processed_label)# 显示识别结果detected_objects = []for label, score in zip(results[0]['labels'], results[0]['scores']):if score > 0.5:if 1 <= label <= 80:  # 检查类别 ID 是否在有效范围内class_name = self.coco_class_names[label - 1]  # COCO类别ID从1开始detected_objects.append(f"类别: {class_name}, 置信度: {score:.2f}")else:print(f"警告: 无效的类别 ID: {label}")if detected_objects:self.result_label.setText("识别结果:\n" + "\n".join(detected_objects))else:self.result_label.setText("未识别到物体!")def clear_display(self):"""清除显示"""self.image_label.clear()self.processed_label.clear()self.result_label.setText("识别结果将在这里显示")self.current_image = Noneself.processed_image = Nonedef main():app = QApplication(sys.argv)window = ObjectDetector()window.show()sys.exit(app.exec_())if __name__ == "__main__":main() 

http://www.khdw.cn/news/67263.html

相关文章:

  • 网站买东西第三方怎么做国家优化防控措施
  • 网站开发php支付接口百度引流推广怎么做
  • 邵阳 做网站公司seo外链专员
  • 加盟网站建设案例欣赏百度推广代理商加盟
  • 郑州大学科技园手机网站建设大数据营销
  • 南宁 网站建设 公司培训心得总结
  • 淮南app开发入门seo技术教程
  • 网站建设编程时注意事项长沙seo霸屏
  • 如何通过网站标题找网站大地资源网在线观看免费
  • 关于做网站电话销售seo外链优化方法
  • 价格划算的常州做网站中国网站排名
  • wordpress修改文章点赞数河南自助建站seo公司
  • 重庆舞台搭建招聘seo综合查询系统
  • dw做的网站放文件夹品牌营销公司
  • 青海网站建设免费推广创建网址链接
  • opencart zencart网站建设长春网站关键词排名
  • 有做美食的视频网站么外贸网站外链平台
  • 做公司产品展示网站网络优化公司有哪些
  • 医院网站可以自己做吗搜索网站关键词
  • 企业官方网站的作用升华网络推广软件
  • 苏州技术馆网站建设磁力天堂torrentkitty
  • 有那个网站可以做免费的投票百度一下你就知道下
  • 自学软件开发seo综合查询怎么进入网站
  • 企业网站设计seo百度平台客服联系方式
  • 网站开发 java百度极速版客服电话
  • 北京兼职做网站建设四川seo平台
  • html5 服装网站网站建设方案书模板
  • 手机网站建设的趋势百度热度
  • wordpress页面模板seo全网营销公司
  • 法律网站开发百度竞价开户渠道