当前位置: 首页 > news >正文

怎样用织梦做淘宝客网站周口网络推广公司

怎样用织梦做淘宝客网站,周口网络推广公司,网站建设后台管理流程,长沙seo技术培训COCA20000 是美国当代语料库中最常见的 20000 个词汇,不过实际上有一些重复,去重之后大概是 17600 个,这些单词是很有用,如果能掌握这些单词,相信会对英语的能力有一个较大的提升。我很早就下载了这些单词,…

COCA20000 是美国当代语料库中最常见的 20000 个词汇,不过实际上有一些重复,去重之后大概是 17600+ 个,这些单词是很有用,如果能掌握这些单词,相信会对英语的能力有一个较大的提升。我很早就下载了这些单词,并且自己编写了一个背单词的简易工具,如果有需要的同学,可以去看我的博客中搜索。今天这篇博客是利用字典树来堆单词的一个可视化。

字典树可视化词汇

下面就是一颗简单的 4 个单词的字典树,这个东西用来检索是很快的,这里我把最后的单词作为树的叶子节点。随着单词的不断增加,整个树也会不断的膨胀,不过这样就难以阅读了,所以我最终选择是把树的排列方向变成从又到右的形式。我之后要实现的字典树和下面这个没有什么本质的区别,只是更大一些而已,利用的数据就是 COCA 20000 的单词。

在这里插入图片描述

上面这个图形是使用 mermaid 绘制的,不过最终我采用的是 dot 语言(绘图指令就在下面),因为 mermaid 可能会遇到性能问题。实际上,dot 语言也是遇到了性能问题,因为单词实在是太多了,导致最后的图形太大了。我想了一些可能的优化措施,比如根据首字母来区分单词,这样的化加上大小写总共 52 个字母,可以把大的树分成 52 个小一点的树。不过,我也不是真的要去看这个树,所以就没有这样做。

在这里插入图片描述

代码处理

下面是全部的处理代码。

"""
字典树
目的是生成 COCA 单词的字典树,但是也可以用于其他单词或者词语(包括英语)。
"""
import jsonclass Node:"""字典树的一个节点,包含这个节点的值,以及它下面的节点,以及是否是一个单词的结尾。"""def __init__(self, val, is_end) -> None:self.val = valself.is_end = is_endself.children = {}def set_is_end(self) -> None:"""有些短的单词要重新设置,否则无法和长的区分开来,例如:are, area"""self.is_end = Trueclass DictTree:"""字典树"""def __init__(self):self.root = Node('/', False)self.stack = [] # 用来保存单词def append(self, word: str):"""向字典树中添加一个单词: 获取当前树的根节点:node = self.root遍历这个词的每一个字符 c,1. 如果该字符在当前树的子树中,则把当前树的子树指向当前树: node = node.children[c]如果当前字符 c 是最后一个字符,那么: node.is_end = True2. 如果该字符不在当前树的子树中,那么新建立一个节点,如果当前字符 c 是最后一个字符:is_end = True把它添加到当前树的子树中, node.children[c] = Node(c, is_end)"""node = self.rootfor i, c in enumerate(word):is_end = not i != len(word)-1if node.children.get(c):node = node.children[c]if is_end:node.set_is_end()else:node.children[c] = Node(c, is_end)node = node.children[c]def dumps(self) -> dict:"""序列化成字典对象"""return {"/": self.__dump(self.root)}def __dump(self, node: Node) -> dict:"""序列化成字典对象的内部方法,一个简单但是并不优雅的递归"""ret = {}self.stack.append(node.val)if not node.children:ret["word"] = "".join(self.stack[1:])for k, c in node.children.items():ret[k] = self.__dump(c)self.stack.pop()return ret# 生成dot描述
# 层序遍历 tips: 使用队列
def BFS_to_dot(tree) -> str:"""将树结构以层序遍历的方式转换为Dot语言表示的图形。Dot语言用于描述图形结构,本函数特别适用于将树结构可视化。:param tree: 输入的树结构,通常是一个字典或类似字典的对象,其中键值对表示节点及其子节点。:return: 返回一个表示树结构的Dot语言字符串。"""if not tree:returnqueue = [tree["/"]]          # 把树的根本身作为第一个节点加入队列count = 0                    # 子节点计数parent_count = 0             # 父节点计数parent_map = {0: "/"}        # 记录父节点序号和它的值nodes = ['n_0 [label="/"]']  # 点集edges = []                   # 边集while queue:node = queue.pop(0)if isinstance(node, dict):for val, child in node.items():queue.append(child)count += 1v = val if val != "word" else childparent_map[count] = vdot_node = f'n_{count} [label="{v}"]'dot_edge = f"n_{parent_count} -> n_{count};"nodes.append(dot_node)edges.append(dot_edge)parent_count += 1node_str = "\n".join(nodes)edge_str = "\n".join(edges)return f"digraph G {{\nrankdir=LR;\n{node_str};\n{edge_str}\n}}"if __name__ == "__main__":in_file = r"C:\Users\25735\Desktop\DragonEnglish\data\raw_txt\coca_no_order.txt"out_json_file = r"C:\Users\25735\Desktop\DragonEnglish\data\raw_txt\coca_dt_tree.json"out_dot_file = r"C:\Users\25735\Desktop\DragonEnglish\data\raw_txt\coca_dt_tree.dot"dt = DictTree()with open(in_file, "r", encoding="utf-8") as file:for word in [line.strip() for line in file.readlines()]:dt.append(word)dt_dumps = dt.dumps()# 序列化json写入with open(out_json_file, "w", encoding="utf-8") as file:json.dump(dt_dumps, file)# dot写入with open(out_dot_file, "w", encoding="utf-8") as file:file.write(BFS_to_dot(dt_dumps))print("EOF")

生成的文件
这里生成的 json 文件是压缩形式的,如果格式化的化,就超过 4m 了。
请添加图片描述

渲染图形

因为我安装了 graphviz 的插件,所以我直接在 VSCode 查看生成的 dot 文件时,它就在渲染了,不过渲染失败了。请添加图片描述

因为这个文件太大了,有十几万行(定义的节点就有几万个了)。

请添加图片描述

所以还是在本地来生成,我已经配置好了 graphviz 的环境了。一开始是生成的 png 格式,不过它提示分辨率有问题,因为节点太多了,导致生成的图形其实没法观看了。所以最终还是选择了 svg 和 pdf 格式,其中 pdf 格式生成的特别慢,至少是 20 分钟以上了。

请添加图片描述

生成的 svg 和 pdf

在这里插入图片描述

这两个文件的渲染都特别费劲,我的电脑打开有点吃力了。

请添加图片描述

请添加图片描述

对它的理解

如果是这 20000 个单词,它们的字母数是 150011 个,这是一个十分庞大的数字了。但是观察上面的字典树可以发现,其实有些单词是含有共同部分的,在计算的时候可以省去这部分,对于字典树来说就是计算其中的节点数就行了。因为我把完整的单词也算做节点了,所以要只计算单个字母的节点,这里我使用正则表达式来计算,最终的结果是: 54457 个。我觉得它对于我们记忆单词有一个很好的启示,那就是我们记忆单词并不是孤立的记忆每一个单词,每个单词之间是有联系的,随着记忆的单词越多,对于单词的掌握应该也是越来越熟悉的,但是太少了还是看不出来。而且这里只有前缀的联系,实际上还包括后缀的联系等。我会把这篇博客中产生的文件上传到 CSDN 中,如果有感兴趣的同学也可以自己下载体验。

请添加图片描述
请添加图片描述

http://www.khdw.cn/news/33009.html

相关文章:

  • qq群优惠券里面网站怎么做的湖南优化电商服务有限公司
  • 网站设计 导航条个人接app推广单去哪里接
  • 自己在网站开发的客户怎么联系网络技术培训
  • 手机网站建设设计吉林seo技术交流
  • 网站流量统计实现十大少儿编程教育品牌
  • 沈阳市最新疫情seo应该怎么做
  • 互联网站建设维护需要做什么seo营销的概念
  • 武汉汉口做网站公司优化科技
  • 海南网站建设hnycbdgoogle seo 优化招聘
  • 网站建设作业指导书深圳seo优化电话
  • 用asp做网站上网帮助自己开网店怎么运营
  • 中国多少个省份31个省seo如何优化网站
  • 无锡市政建设集团有限公司网站高级seo是什么职位
  • 绿色家园网站怎么做信息如何优化上百度首页
  • 学校网站查询个人信息怎么去推广自己的公司
  • phpwind怎么做网站重庆关键词自然排名
  • 在哪家网站做推广好360免费建站教程
  • 造价工程师注册公示查询外贸seo推广招聘
  • 教育部专业申报建设 网站湛江seo
  • 建网站大概多少费用搜索网站关键词
  • 网站制作技术有哪些域名查询网
  • 男女激烈做羞羞事网站有哪些网站可以免费推广
  • 湖北建设网官方网站今日冯站长之家
  • 惠阳住房与规划建设局网站谷歌官方app下载
  • 微信web开发者工具下载seo云优化是什么意思
  • 品牌网站建设供应商武汉线上推广具体应该怎么做
  • 网站制作 流程怎样做网站的优化、排名
  • 加强政府门户网站建设方案西安网站建设公司电话
  • 网站开发的比较视频号推广方法
  • 软装设计效果图牛排seo系统