横岗网站建设青岛新闻最新今日头条
在复杂场景中实现抓取检测,Graspness是一种端到端的方法;
输入点云数据,输出抓取角度、抓取深度、夹具宽度等信息。
开源地址:https://github.com/rhett-chen/graspness_implementation?tab=readme-ov-file
论文地址:Graspness Discovery in Clutters for Fast and Accurate Grasp Detection
目录
1、准备GPU加速环境
2、安装torch和cudatoolkit
3、安装Graspness相关依赖库
4、安装MinkowskiEngine
5、安装pointnet2和knn
6、安装graspnetAPI
7、模型推理——抓取点估计
1、准备GPU加速环境
推荐在Conda环境中搭建环境,方便不同项目的管理~
首先需要安装好Nvidia 显卡驱动,后面还要安装CUDA11.1
输入命令:nvidia-smi,能看到显卡信息,说明Nvidia 显卡驱动安装好了
然后需要单独安装CUDA11.1了,上面虽然安装了CUDA12.2也不影响的
各种CUDA版本:https://developer.nvidia.com/cuda-toolkit-archive
CUDA11.1下载地址:https://developer.nvidia.com/cuda-11.1.0-download-archive
然后根据电脑的系统(Linux)、CPU类型,选择runfile方式
然后下载cuda_11.1.0_455.23.05_linux.run文件
wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
开始安装
sudo sh cuda_11.1.0_455.23.05_linux.run
来到下面的界面,点击“Continue”
输入“accept”
下面是关键,在455.23.05这里“回车”,取消安装;
这里X是表示需要安装的,我们只需安装CUDA11相关的即可
安装完成后,能看到/usr/local/cuda-11.1目录啦
(base) lgp@lgp-MS-7E07:~/2024_project$ ls /usr/local/cuda-11.1
bin EULA.txt libnvvp nsight-systems-2020.3.4 nvvm samples targets
DOCS extras nsight-compute-2020.2.0 nvml README src tools
参考1:https://blog.csdn.net/weixin_37926734/article/details/123033286
参考2:https://blog.csdn.net/weixin_49223002/article/details/120509776
2、安装torch和cudatoolkit
首先创建一个Conda环境,名字为graspness,python版本为3.8
然后进行graspness环境
conda create -n graspness python=3.8
conda activate graspness
这里需要安装pytorch1.8.2,cudatoolkit=11.1
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia
pytorch1.8.2官网地址:https://pytorch.org/get-started/previous-versions/
3、安装Graspness相关依赖库
下载graspness代码
git clone https://github.com/rhett-chen/graspness_implementation.git
cd graspnet-graspness
编辑 requirements.txt,注释torch和MinkowskiEngine
# pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# torch>=1.8
tensorboard==2.3
numpy==1.23.5
scipy
open3d>=0.8
Pillow
tqdm
# MinkowskiEngine==0.5.4
开始安装Graspness相关依赖库
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
4、安装MinkowskiEngine
在安装MinkowskiEngine
之前,需要先安装相关的依赖
pip install ninja -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install openblas-devel -c anaconda
然后本地安装的流程:
export CUDA_HOME=/usr/local/cuda-11.1 # 指定CUDA_HOME为cuda-11.1
export MAX_JOBS=2 # 降低占用CPU的核心数目,避免卡死(可选)
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas
等待安装完成
5、安装pointnet2和knn
这些两个的安装需要CUDA编译的,依赖于前面的export CUDA_HOME=/usr/local/cuda-11.1
首先来到graspnet-graspness工程中,安装pointnet2
cd pointnet2
python setup.py install
再安装knn
cd knn
python setup.py install
6、安装graspnetAPI
这里安装的流程如下,逐条命令执行
git clone https://github.com/graspnet/graspnetAPI.git
cd graspnetAPI
pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple
成功安装后,需要再安装numpy==1.23.5
pip install numpy==1.23.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
到这里安装完成啦~
7、模型推理——抓取点估计
跑一下模型推理的demo,看看可视化的效果:
分享完成~