笔记本电脑做网站比较畅快常德政府网站市民留言
引言
拓扑排序是有向无环图(DAG)中的一种线性排序,使得对于图中的每一条有向边 ( u \rightarrow v ),顶点 ( u ) 在排序中出现在顶点 ( v ) 之前。本文将详细介绍两种实现拓扑排序的算法:Kahn算法和基于深度优先搜索(DFS)的算法。
目录
- Kahn算法
- 基于DFS的算法
Kahn算法
定义
Kahn算法是一种基于入度的拓扑排序算法。该算法通过不断移除入度为0的顶点及其边来构建拓扑排序。
算法步骤
- 初始化:计算图中所有顶点的入度,并将所有入度为0的顶点添加到一个队列中。
- 构建排序:从队列中取出一个顶点,将其添加到拓扑排序的结果中,并移除该顶点及其所有出边。对于每个被移除的出边,如果目标顶点的入度减为0,则将该顶点添加到队列中。
- 检测环:重复步骤2,直到队列为空。如果排序结果中的顶点数量小于图中的顶点数量,则说明图中存在环,无法进行拓扑排序。
示例
假设我们有一个有向无环图,顶点集合为 ({A, B, C, D, E, F}),边集合为 ({(A, C), (B, C), (B, D), (C, E), (D, F), (E, F)})。
Kahn算法实现
下面是用Java实现Kahn算法的代码示例:
import java.util.*;public class KahnAlgorithm {private int vertices; // 顶点数量private List<Integer>[] adjList; // 邻接表public KahnAlgorithm(int vertices) {this.vertices = vertices;adjList = new List[vertices];for (int i = 0; i < vertices; i++) {adjList[i] = new ArrayList<>();}}// 添加边public void addEdge(int src, int dest) {adjList[src].add(dest);}// Kahn算法实现的拓扑排序public void topologicalSort() {int[] inDegree = new int[vertices];for (int i = 0; i < vertices; i++) {for (int dest : adjList[i]) {inDegree[dest]++;}}Queue<Integer> queue = new LinkedList<>();for (int i = 0; i < vertices; i++) {if (inDegree[i] == 0) {queue.add(i);}}List<Integer> topOrder = new ArrayList<>();while (!queue.isEmpty()) {int u = queue.poll();topOrder.add(u);for (int neighbor : adjList[u]) {if (--inDegree[neighbor] == 0) {queue.add(neighbor);}}}if (topOrder.size() != vertices) {System.out.println("图中存在环,无法进行拓扑排序");return;}System.out.println("拓扑排序结果:");for (int node : topOrder) {System.out.print(node + " ");}}public static void main(String[] args) {KahnAlgorithm graph = new KahnAlgorithm(6);graph.addEdge(0, 2);graph.addEdge(1, 2);graph.addEdge(1, 3);graph.addEdge(2, 4);graph.addEdge(3, 5);graph.addEdge(4, 5);graph.topologicalSort();}
}
代码注释
-
类和构造函数:
public class KahnAlgorithm {private int vertices; // 顶点数量private List<Integer>[] adjList; // 邻接表public KahnAlgorithm(int vertices) {this.vertices = vertices;adjList = new List[vertices];for (int i = 0; i < vertices; i++) {adjList[i] = new ArrayList<>();}}
KahnAlgorithm
类包含图的顶点数量和邻接表,并有一个构造函数来初始化这些变量。 -
添加边:
public void addEdge(int src, int dest) {adjList[src].add(dest); }
addEdge
方法用于向图中添加边。 -
Kahn算法的拓扑排序:
public void topologicalSort() {int[] inDegree = new int[vertices];for (int i = 0; i < vertices; i++) {for (int dest : adjList[i]) {inDegree[dest]++;}}Queue<Integer> queue = new LinkedList<>();for (int i = 0; i < vertices; i++) {if (inDegree[i] == 0) {queue.add(i);}}List<Integer> topOrder = new ArrayList<>();while (!queue.isEmpty()) {int u = queue.poll();topOrder.add(u);for (int neighbor : adjList[u]) {if (--inDegree[neighbor] == 0) {queue.add(neighbor);}}}if (topOrder.size() != vertices) {System.out.println("图中存在环,无法进行拓扑排序");return;}System.out.println("拓扑排序结果:");for (int node : topOrder) {System.out.print(node + " ");} }
topologicalSort
方法实现了Kahn算法,进行拓扑排序。 -
主函数:
public static void main(String[] args) {KahnAlgorithm graph = new KahnAlgorithm(6);graph.addEdge(0, 2);graph.addEdge(1, 2);graph.addEdge(1, 3);graph.addEdge(2, 4);graph.addEdge(3, 5);graph.addEdge(4, 5);graph.topologicalSort(); }
main
方法创建一个图并进行拓扑排序。
Kahn算法的执行过程图解
基于DFS的算法
定义
基于DFS的拓扑排序算法通过递归的方式遍历图的每个顶点,并在访问完所有邻接顶点后将顶点压入栈中,最终从栈顶依次弹出顶点即为拓扑排序结果。
算法步骤
- 初始化:创建一个栈用于存储排序结果,标记所有顶点为未访问。
- DFS遍历:对于每个未访问的顶点,进行DFS遍历。递归访问该顶点的所有邻接顶点,访问完毕后将该顶点压入栈中。
- 构建排序:重复步骤2,直到所有顶点都被访问。最后从栈顶
依次弹出顶点即为拓扑排序结果。
示例
假设我们有一个有向无环图,顶点集合为 ({A, B, C, D, E, F}),边集合为 ({(A, C), (B, C), (B, D), (C, E), (D, F), (E, F)})。
基于DFS的算法实现
下面是用Java实现基于DFS的拓扑排序算法的代码示例:
import java.util.*;public class DFSTopologicalSort {private int vertices; // 顶点数量private List<Integer>[] adjList; // 邻接表public DFSTopologicalSort(int vertices) {this.vertices = vertices;adjList = new List[vertices];for (int i = 0; i < vertices; i++) {adjList[i] = new ArrayList<>();}}// 添加边public void addEdge(int src, int dest) {adjList[src].add(dest);}// 递归实现DFSprivate void DFS(int vertex, boolean[] visited, Stack<Integer> stack) {visited[vertex] = true;for (int neighbor : adjList[vertex]) {if (!visited[neighbor]) {DFS(neighbor, visited, stack);}}stack.push(vertex);}// 基于DFS的拓扑排序public void topologicalSort() {Stack<Integer> stack = new Stack<>();boolean[] visited = new boolean[vertices];for (int i = 0; i < vertices; i++) {if (!visited[i]) {DFS(i, visited, stack);}}System.out.println("拓扑排序结果:");while (!stack.isEmpty()) {System.out.print(stack.pop() + " ");}}public static void main(String[] args) {DFSTopologicalSort graph = new DFSTopologicalSort(6);graph.addEdge(0, 2);graph.addEdge(1, 2);graph.addEdge(1, 3);graph.addEdge(2, 4);graph.addEdge(3, 5);graph.addEdge(4, 5);graph.topologicalSort();}
}
代码注释
-
类和构造函数:
public class DFSTopologicalSort {private int vertices; // 顶点数量private List<Integer>[] adjList; // 邻接表public DFSTopologicalSort(int vertices) {this.vertices = vertices;adjList = new List[vertices];for (int i = 0; i < vertices; i++) {adjList[i] = new ArrayList<>();}}
DFSTopologicalSort
类包含图的顶点数量和邻接表,并有一个构造函数来初始化这些变量。 -
添加边:
public void addEdge(int src, int dest) {adjList[src].add(dest); }
addEdge
方法用于向图中添加边。 -
递归实现DFS:
private void DFS(int vertex, boolean[] visited, Stack<Integer> stack) {visited[vertex] = true;for (int neighbor : adjList[vertex]) {if (!visited[neighbor]) {DFS(neighbor, visited, stack);}}stack.push(vertex); }
DFS
方法递归访问顶点及其邻接顶点,并在访问完所有邻接顶点后将顶点压入栈中。 -
基于DFS的拓扑排序:
public void topologicalSort() {Stack<Integer> stack = new Stack<>();boolean[] visited = new boolean[vertices];for (int i = 0; i < vertices; i++) {if (!visited[i]) {DFS(i, visited, stack);}}System.out.println("拓扑排序结果:");while (!stack.isEmpty()) {System.out.print(stack.pop() + " ");} }
topologicalSort
方法实现了基于DFS的拓扑排序,输出拓扑排序结果。 -
主函数:
public static void main(String[] args) {DFSTopologicalSort graph = new DFSTopologicalSort(6);graph.addEdge(0, 2);graph.addEdge(1, 2);graph.addEdge(1, 3);graph.addEdge(2, 4);graph.addEdge(3, 5);graph.addEdge(4, 5);graph.topologicalSort(); }
main
方法创建一个图并进行拓扑排序。
基于DFS算法的执行过程图解
结论
通过上述讲解和实例代码,我们详细展示了Kahn算法和基于DFS的拓扑排序算法的定义、步骤及其实现。希望这篇博客对您有所帮助!
如果您觉得这篇文章对您有帮助,请关注我的CSDN博客,点赞并收藏这篇文章,您的支持是我持续创作的动力!
关键内容总结:
- Kahn算法的定义和实现
- 基于DFS的拓扑排序算法的定义和实现
- 两种算法的执行过程图解
推荐阅读:深入探索设计模式专栏,详细讲解各种设计模式的应用和优化。点击查看:深入探索设计模式。
特别推荐:设计模式实战专栏,深入解析设计模式的实际应用,提升您的编程技巧。点击查看:设计模式实战。
如有任何疑问或建议,欢迎在评论区留言讨论。谢谢阅读!