沈阳市建设工程质量检测中心网站如何找外包的销售团队
文章目录
- 三维球面坐标
- 史瓦西时空
三维球面坐标
Einsteinpy
中提供了克氏符模型,可通过ChristoffelSymbols
获取。简单起见,先以最直观的三维球面为例,来用Einsteinpy
查看其克氏符的表达形式。
三维球面的度规张量可表示为
g00=1g11=r2g22=r2sin2θgij=0,i≠j\begin{aligned} g_{00}&=1\\ g_{11}&=r^2\\ g_{22}&=r^2\sin^2\theta\\ g_{ij}&=0, i\not=j \end{aligned} g00g11g22gij=1=r2=r2sin2θ=0,i=j
克氏符这个概念是从度规张量的协变导数为0的事实中得到的,换言之,可通过度规来得到克氏符的分量表达式
import numpy as np
import sympy
from einsteinpy.symbolic import MetricTensor, ChristoffelSymbols, RiemannCurvatureTensorr, th, phi = sympy.symbols('r theta phi')
# 球坐标度规
metric = np.diagflat([1,r**2,(r**2)*(sympy.sin(th)**2)])
m_obj.tensor()
# [[1, 0, 0], [0, r**2, 0], [0, 0, r**2*sin(theta)**2]]
ch = ChristoffelSymbols.from_metric(m_obj)
sympy.latex(ch.tensor())
打印出来如下
[[0000−r000−rsin2(θ)][01r01r0000−sin(θ)cos(θ)][001r00cos(θ)sin(θ)1rcos(θ)sin(θ)0]]\left[\begin{matrix}\left[\begin{matrix}0 & 0 & 0\\0 & - r & 0\\0 & 0 & - r \sin^{2}{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & \frac{1}{r} & 0\\\frac{1}{r} & 0 & 0\\0 & 0 & - \sin{\left(\theta \right)} \cos{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & \frac{1}{r}\\0 & 0 & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}}\\\frac{1}{r} & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}} & 0\end{matrix}\right]\end{matrix}\right] 0000−r000−rsin2(θ)0r10r10000−sin(θ)cos(θ)00r100sin(θ)cos(θ)r1sin(θ)cos(θ)0
这就是克氏符的真实面貌。
史瓦西时空
下面来搞一下史瓦西时空中的克氏符,而在此之前,先给出史瓦西时空的度规
t, r, th, phi = sympy.symbols("t r theta phi")
G, M, c, a = sympy.symbols("G M c a")
c2 = c**2
# using metric values of schwarschild space-time
# a is schwarzschild radius
list2d = np.diagflat([1-a/r, -1 / ((1 - (a/r)) * c2), -1 * (r**2)/c2,-1 * (r**2) * (sympy.sin(th)**2) / c2])
sch = MetricTensor(list2d, [t, r, th, phi])
sympy.latex(sch.tensor())
即其度规张量为
[−ar+10000−1c2(−ar+1)0000−r2c20000−r2sin2(θ)c2]\left[\begin{matrix}- \frac{a}{r} + 1 & 0 & 0 & 0\\0 & - \frac{1}{c^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0\\0 & 0 & - \frac{r^{2}}{c^{2}} & 0\\0 & 0 & 0 & - \frac{r^{2} \sin^{2}{\left(\theta \right)}}{c^{2}}\end{matrix}\right] −ra+10000−c2(−ra+1)10000−c2r20000−c2r2sin2(θ)
上式中,aaa为史瓦西半径,MMM为天体质量。
接下来,就可以请出史瓦西空间中的克氏符了
sch_ch = ChristoffelSymbols.from_metric(sch)
sympy.latex(sch_ch.tensor())
[[0a2r2(−ar+1)00a2r2(−ar+1)00000000000][−a(ac22r−c22)r20000a(ac22r−c22)c2r2(−ar+1)200002r(ac22r−c22)c200002r(ac22r−c22)sin2(θ)c2][0000001r001r00000−sin(θ)cos(θ)][00000001r000cos(θ)sin(θ)01rcos(θ)sin(θ)0]]\left[\begin{matrix}\left[\begin{matrix}0 & \frac{a}{2 r^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0\\\frac{a}{2 r^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right] \left[\begin{matrix}- \frac{a \left(\frac{a c^{2}}{2 r} - \frac{c^{2}}{2}\right)}{r^{2}} & 0 & 0 & 0\\0 & \frac{a \left(\frac{a c^{2}}{2 r} - \frac{c^{2}}{2}\right)}{c^{2} r^{2} \left(- \frac{a}{r} + 1\right)^{2}} & 0 & 0\\0 & 0 & \frac{2 r \left(\frac{a c^{2}}{2 r} - \frac{c^{2}}{2}\right)}{c^{2}} & 0\\0 & 0 & 0 & \frac{2 r \left(\frac{a c^{2}}{2 r} - \frac{c^{2}}{2}\right) \sin^{2}{\left(\theta \right)}}{c^{2}}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & \frac{1}{r} & 0\\0 & \frac{1}{r} & 0 & 0\\0 & 0 & 0 & - \sin{\left(\theta \right)} \cos{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & \frac{1}{r}\\0 & 0 & 0 & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}}\\0 & \frac{1}{r} & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}} & 0\end{matrix}\right]\end{matrix}\right] 02r2(−ra+1)a002r2(−ra+1)a00000000000−r2a(2rac2−2c2)0000c2r2(−ra+1)2a(2rac2−2c2)0000c22r(2rac2−2c2)0000c22r(2rac2−2c2)sin2(θ)000000r100r100000−sin(θ)cos(θ)0000000r1000sin(θ)cos(θ)0r1sin(θ)cos(θ)0