当前位置: 首页 > news >正文

php程序员网站开发建设百度一下百度搜索百度一下

php程序员网站开发建设,百度一下百度搜索百度一下,云南建设网官方网站,成都住建局官网地址以下是关于下三角矩阵L的行列式一定等于-1的一些说明 笔者的一些话(写在最前面): 这是一篇小文,是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来,是因为这一段相对于原文是可以完全独立的,也是因为我…

  以下是关于下三角矩阵L的行列式一定等于+-1的一些说明

笔者的一些话(写在最前面):

        这是一篇小文,是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来,是因为这一段相对于原文是可以完全独立的,也是因为我自认为这是原文中很精彩的一段论证。为了便于我自己后续翻阅和查找,也是为了给我CSDN文章里面凑数,这才有了这篇文章。

证明:在LU分解中,下三角矩阵L的行列式一定是\pm 1.

在证明之前,我这里先补充几条关于行列式的性质:

性质1:对于三角矩阵而言,不论是上三角矩阵还是下三角矩阵,其行列式的值都等于主对角线上元素的乘积。

        此处引用Gilbert strang的线性代数教科书《introduction to linear algebra》中,第251页处的一段关于矩阵行列式的相应说明:

        截图中第七条性质说:如果矩阵A是一个三角矩阵,则矩阵A的行列式等于其对角线上元素的乘积。

\mathbf{\left | A \right |=a_{11}*a_{22}*...*a_{nn}}

性质2:两个矩阵A,B的积AB的行列式|AB|等于这两个矩阵各自的行列式|A|和|B|的积,即:

\mathbf{\left | AB \right |=\left | A \right |\left | B \right |}

性质3:单位矩阵I的行列式为1。

性质4:对矩阵进行行与行之间的交换后,需要改变原矩阵行列式的正负号。

        在LU分解中,下三角阵L是高斯消元的逆过程,是多个消元矩阵E的逆矩阵E^{-1}的乘积(形如下图中的矩阵)。

        首先,根据上面说的性质1可知,所有消元矩阵E的逆矩阵E^{-1}的行列式等于其对角线上所有元素的乘积。又因为矩阵E^{-1}对角线上元素都是1,所以,E^{-1}的行列式一定等于1。此外,根据性质2,L的行列式等于多个E^{-1}的行列的乘积,所以,L的行列式必然等于1,即:

\left |L \right |=\left | {E_{1}}^{-1}\right |*\left | {E_{2}}^{-1}\right |*\left | {E_{3}}^{-1}\right |*...\left | {E_{n}}^{-1}\right |

        可是,如果对矩阵A进行高斯消元的过程中,遇到对角线上的元素为0的情况,就需要对矩阵进行行交换,则上式就会包含一些置换矩阵:

\left |L \right |=\left | {P_{1}}^{-1}\right |*\left | {E_{1}}^{-1}\right |*\left | {E_{2}}^{-1}\right |*\left | {E_{3}}^{-1}\right |*\left | {E_{4}}^{-1}\right |*\left | {P_{2}}^{-1}\right |...\left | {E_{n}}^{-1}\right |

        这种情况下计算出来的L矩阵可就不一定是标准的下三角矩阵了,比如说下面这个矩阵:

        这样一来就需要对L矩阵进行行交换,把他变成标准的下三角矩阵,以确保他的det等于1。而交换的过程需要用置换矩阵P记录下来,使得原来的L,变成PL(这时的L已经是标准的下三角矩阵了)。因为置换矩阵P只不过是对单位矩阵I进行行交换后的结果,因此,综合性质3性质4可知,置换矩阵P的行列式的值只能是+1或-1。在结合前面得出的L矩阵的行列式一定是1的结论,最终PL的行列式只能是+1或-1。

        因此,当我们基于矩阵A的LU分解计算出L的det后(必然是1),如果高斯消元的过程中进行过行交换,还要再根据行交换的次数(置换矩阵P)去调整det的符号。

事实上,在matlab中自带的计算矩阵行列式的det函数就利用了这一点。

        按照Matlab的官方说明文档,首先,他在计算矩阵的det时先调了lu分解函数,对矩阵进行分解。

注意,matlab的lu分解函数有很多,只是他在计算行列式时,调用的是[L,U]=lu(A)。

        按照他官方文档的说法,分解后的L矩阵和U矩阵中,L矩阵有被置换过,也就不是标准的三角矩阵。这和我们前面提到的,如果消元时进行过行交换的情况是一致的。

        然后,对这个“经过置换的下三角矩阵L”进行行交换,并记录交换过程得到:

\left | PL \right |=\left |P \right |\left | L \right |=\pm 1*1=\pm 1

        最后一步,求出矩阵U(他一定是一个标准的上三角矩阵)中主对角线上所有元素的乘积,然后和前一步的结果相乘,得到矩阵A的行列式:


\left |A \right |=\left |PLU \right |=\left | P \right |\left | L \right |\left | U \right |=(\pm 1)*(1)*\left | U \right |=\pm\left | U \right |

 例子:


(全文完)

作者 --- 松下J27 

 参考文献(鸣谢):

1,https://en.wikipedia.org/wiki/Determinant

2,Determinant of a Matrix

3,矩阵行列式 - MATLAB det- MathWorks 中国

4,线性代数 --- LU分解(Gauss消元法的矩阵表示)_矩阵的lu分解-CSDN博客

5,线性代数 --- Gauss消元的部分主元法和完全主元法_部分选主元高斯matlab-CSDN博客

(配图与本文无关)

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

http://www.khdw.cn/news/66933.html

相关文章:

  • 做淘宝图的素材搜索网站大学生网络营销策划书
  • 怎么在网站里做网页新手做seo怎么做
  • jsp网站服务器如何做防护如何搜索关键词
  • 做刷题网站赚钱么外链链接平台
  • 建设网站价格武汉seo报价
  • 旅游网站开发项目介绍贵州二级站seo整站优化排名
  • 做外贸网站挣钱吗seo优化或网站编辑
  • 汕头网站建设技术托管百度关键词收录排名
  • app展示网站模板免费下载seo搜索引擎优化课程总结
  • 南昌建设人才网站中国站长站官网
  • 深圳市手机网站建设哪家好百度推广费用怎么算
  • 秦皇岛网站优化长沙网络营销推广公司
  • 厦门建设厅网站seo服务套餐
  • 甘肃做网站哪家专业神马seo服务
  • 成都网站模板购买搜索引擎关键词怎么选
  • 山西省建五公司官网北京seo专业团队
  • 做游戏网站打鱼泰州网站整站优化
  • 网站建设银行业务预约纪念币猪年纪念币预约服装品牌策划方案
  • 怎么查询网站的域名备案seo的收费标准
  • 移动公司网络维护seo公司网站
  • 营销型网站建设熊掌号在线优化seo
  • 自己怎么做电影网站河南制作网站公司
  • 天气预报网站怎么做软文广告图片
  • 微信公众网站开发百度seo培训
  • 企业所得税税负率优化 英语
  • 低成本网站制作人力资源管理师
  • 做网站赤峰深圳优化seo
  • wordpress没有外观武汉本地seo
  • 网站策划中规划预测怎们做大泽山seo快速排名
  • 石家庄站客服电话职业技能培训网站