当前位置: 首页 > news >正文

微信公众网站开发百度seo培训

微信公众网站开发,百度seo培训,汕头 网站设计,网络seo专员招聘文章目录 前言一、Bert的vocab.txt内容查看二、BERT模型转换方法(vocab.txt)三、vocab内容与模型转换对比四、中文编码总结 前言 最近一直在学习多模态大模型相关内容,特别是图像CV与语言LLM模型融合方法,如llama-1.5、blip、meta-transformer、glm等大…

文章目录

  • 前言
  • 一、Bert的vocab.txt内容查看
  • 二、BERT模型转换方法(vocab.txt)
  • 三、vocab内容与模型转换对比
  • 四、中文编码
  • 总结

前言

最近一直在学习多模态大模型相关内容,特别是图像CV与语言LLM模型融合方法,如llama-1.5、blip、meta-transformer、glm等大模型。其语言模型的中文和英文句子如何编码成计算机识别符号,使我困惑。我查阅资料,也发现很少有博客全面说明。为此,我以该博客记录其整过过程,并附有对应代码供读者参考。

处理语言模型需要将英文或中文等字符表示成模型能识别的符号,为此不同模型会按照某些方法表示,但不同模型转计算机能识别思路是一致的。

一、Bert的vocab.txt内容查看

来源tokenization.py文件内容。

PRETRAINED_VOCAB_ARCHIVE_MAP = {'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}

vocab.txt内容:
在这里插入图片描述
上图是我截取vocab.txt的内容,基本很多有的符号/数字/运算符/中文/字母/单词等均在该txt文件夹中。

二、BERT模型转换方法(vocab.txt)

加入有2句话,分别为text01与text02(如下),他们会转换vocab.txt中已有的单词形式。其中需要留意:’##符号连接长单词在vocab.txt部件方式,如embeddings表示为['em','##bed','##ding','s']。同时,vocab.txt不存在单词部件会化成最小组件,单个字母(vocab.txt最小部件是字母)。
代码如下:

from pytorch_pretrained_bert import BertTokenizertokenizer = BertTokenizer.from_pretrained('../voccab.txt')text01 = "Here is the sentence I want embeddings for."
text02 = "wish for world peace."
marked_text = "[CLS] " + text01 + " [SEP] " + text02 + " [SEP]"
print('marked_text = ', marked_text)tokenized_text = tokenizer.tokenize(marked_text)
print('tokenized_text = ', tokenized_text)indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)for tup in zip(tokenized_text, indexed_tokens):print("tup = ", tup)

marked_text是将句子使用符号分开表示其句子含义;
tokenized_text表示将句子化成vocab.txt文件提供的部件,其中##bed有单独表示;
tup = (‘[CLS]’, 101)后的内容表示其符号对应的索引。
其结果如下:

marked_text =  [CLS] Here is the sentence I want embeddings for. [SEP] wish for world peace. [SEP]
tokenized_text =  ['[CLS]', 'here', 'is', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.', '[SEP]', 'wish', 'for', 'world', 'peace', '.', '[SEP]']tup =  ('[CLS]', 101)
tup =  ('here', 2182)
tup =  ('is', 2003)
tup =  ('the', 1996)
tup =  ('sentence', 6251)
tup =  ('i', 1045)
tup =  ('want', 2215)
tup =  ('em', 7861)
tup =  ('##bed', 8270)
tup =  ('##ding', 4667)
tup =  ('##s', 2015)
tup =  ('for', 2005)
tup =  ('.', 1012)
tup =  ('[SEP]', 102)
tup =  ('wish', 4299)
tup =  ('for', 2005)
tup =  ('world', 2088)
tup =  ('peace', 3521)
tup =  ('.', 1012)
tup =  ('[SEP]', 102)

总结:最终词汇等内容转为对应的索引数字表达。

三、vocab内容与模型转换对比

从图中可知,vocab的索引值总比模型给出索引值小1,这是因为模型从0开始索引,而vocab展示内容从1开始,因此相差1。
在这里插入图片描述
再次强调:模型对词汇编码实际为人为给出对应表(如:vocab.txt)所对应的索引,用索引值替换词语。

四、中文编码

以上内容已全部告知读者,模型如何编码句子。而该部分内容是拓展,使用中文编码,查看其结果。
代码如下:

from pytorch_pretrained_bert import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('../voccab.txt')
text01 = "the sentence I want embeddings for."
text02 = "愿世界和平。"
marked_text = "[CLS] " + text01 + " [SEP] " + text02 + " [SEP]"
print('marked_text = ', marked_text)
tokenized_text = tokenizer.tokenize(marked_text)
print('tokenized_text = ', tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
for tup in zip(tokenized_text, indexed_tokens):print("tup = ", tup)

结果如下:

marked_text =  [CLS] the sentence I want embeddings for. [SEP] 愿世界和平。 [SEP]
tokenized_text =  ['[CLS]', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.', '[SEP]', '[UNK]', '世', '[UNK]', '和', '平', '。', '[SEP]']
tup =  ('[CLS]', 101)
tup =  ('the', 1996)
tup =  ('sentence', 6251)
tup =  ('i', 1045)
tup =  ('want', 2215)
tup =  ('em', 7861)
tup =  ('##bed', 8270)
tup =  ('##ding', 4667)
tup =  ('##s', 2015)
tup =  ('for', 2005)
tup =  ('.', 1012)
tup =  ('[SEP]', 102)
tup =  ('[UNK]', 100)
tup =  ('世', 1745)
tup =  ('[UNK]', 100)
tup =  ('和', 1796)
tup =  ('平', 1839)
tup =  ('。', 1636)
tup =  ('[SEP]', 102)

图显示:
在这里插入图片描述
可发现,和上面英文句子编码是一样的。

总结

一句话,模型是根据提供对应表,将中/英文句子或符号编译成对应索引,被计算识别。

http://www.khdw.cn/news/66908.html

相关文章:

  • 企业所得税税负率优化 英语
  • 低成本网站制作人力资源管理师
  • 做网站赤峰深圳优化seo
  • wordpress没有外观武汉本地seo
  • 网站策划中规划预测怎们做大泽山seo快速排名
  • 石家庄站客服电话职业技能培训网站
  • 杭州模板网站建站sem投放是什么意思
  • 小企业网站建设百度竞价搜索
  • 网站建设口号百度手机网页版
  • 政府门户网站建设目标优化网站排名方法
  • 360提示危险网站原因列表网推广收费标准
  • 晋江网站建设哪家好安卓手机性能优化软件
  • 支付网站建设费入什么科目今日军事新闻最新消息新闻报道
  • 安顺 网站建设公司seo是什么职位
  • 网站制作合作官网优化哪家专业
  • 滨海网站建设公司推广软文代写
  • 做网站要学哪些属于b2b的网站有哪些
  • wordpress拖拽建站寻找客户的渠道和方法
  • 哪些官网用wordpressseo服务商技术好的公司
  • 哪些公司做网站好百度关键词排名代做
  • 不用下载直接进入的app网站优化 福州
  • 网站制作设计正规公司市场营销课程
  • 互联网推广员seo代码优化工具
  • ps设计师接单平台长沙seo结算
  • 用asp做网站有哪控件网域名解析ip查询
  • 东莞市镇街建设项目监理招标网站千锋教育学费
  • 如何快速建站新东方教育培训机构
  • 腾讯企点官网厦门关键词优化企业
  • 在ps中做网站首页的尺寸外贸企业网站推广
  • 手机网站和pc网站链接网