当前位置: 首页 > news >正文

外贸网站seo优化常德论坛网站

外贸网站seo优化,常德论坛网站,洛阳最好的做网站的公司哪家好,河北seo推广平台使用Llama 3.1创建合成数据集以调优你的大型语言模型 在数据驱动的人工智能领域,数据是核心资产。开发高质量数据集既复杂又昂贵,因此很多实验室和开发者选择使用合成数据集。本文将介绍如何利用大型语言模型Llama 3.1 405B创建合成数据集,并…

使用Llama 3.1创建合成数据集以调优你的大型语言模型

在数据驱动的人工智能领域,数据是核心资产。开发高质量数据集既复杂又昂贵,因此很多实验室和开发者选择使用合成数据集。本文将介绍如何利用大型语言模型Llama 3.1 405B创建合成数据集,并展示整个过程的关键步骤,从数据生成到数据集上传。

Llama 3.1 405B的特点与应用

模型特点

Llama 3.1 405B是Meta最新推出的语言模型家族中的一员,不仅体现在其巨大的规模,还在于其推理能力的显著提升。与之前的8B和70B版本相比,405B模型在各项基准测试中表现出色,已接近一些最佳闭源模型的表现。

应用场景

该模型特别适合用于合成数据生成,如检索增强生成(RAG)和监督微调(SFT)等复杂工作流。由于其能力强大,Llama 3.1可以在多种实际应用中发挥重要作用,例如在自然语言处理任务中生成用户指令和响应对。

数据集构建步骤

设置API密钥

为了使用Nvidia的API远程访问Llama 3.1 405B模型,开发者需要获取其API密钥。通过Nvidia NIM平台,申请免费信用额度,然后将API密钥设置在代码中:

client = OpenAI(base_url="https://integrate.api.nvidia.com/v1",api_key=os.environ["NVIDIA_API_KEY"]
)
MODEL = "meta/llama-3.1-405b-instruct"

生成子主题

在构建数据集时,涵盖各种场景是至关重要的。为此,可以定义子主题,允许Llama 3.1生成多个指令/响应对。以下代码展示了如何生成五个与Git相关的子主题:

n_subtopics = 5
TOPIC_GENERATION_PROMPT_TEMPLATE = "请根据Git主题生成{n_subtopics}个子主题。"

生成指令

针对每个子主题,生成对应的用户指令是关键步骤。虽然目标是一百条指令,但生成的最终数量往往会有所减少。这是实际操作中的常见情况,尤其是在请求大型模型生成时。

INSTRUCTION_PROMPT_TEMPLATE = "对于子主题{sub_topic}生成{n_instructions}条指令。"

生成响应

对于每条指令,接下来需要生成相关的响应。为了确保响应的质量,生成时需要关注其信息量、简洁性和相关性。

RESPONSE_PROMPT_TEMPLATE = "针对指令生成相关响应。指令是: {instruction}"

响应过滤

使用Nemotron 4

尽管生成了各种指令和响应,不是每一个都能满足质量标准。为此,利用Nvidia的Nemotron 4模型来评估并筛选低质量响应。Nemotron 4提供的评估标准涵盖了帮助程度、正确性、连贯性等多个维度。

helpfulness_THRESHOLD = 3
verbosity_THRESHOLD = 2.5
synthetic_data = [data for i, data in enumerate(synthetic_data) if not (score_list[i]["helpfulness"] < helpfulness_THRESHOLD or score_list[i]["verbosity"] > verbosity_THRESHOLD)]

数据集推送

HuggingFace登录与数据上传

生成并过滤后的合成数据集,最后一步是将其推送至HuggingFace平台以方便后续使用。首先需要登录HuggingFace,并提供API令牌进行身份验证。

from huggingface_hub import login
login()

完成登录后,通过以下代码将数据集上传至HuggingFace:

with open(f'synthetic_data_filtered.jsonl', 'r') as f:data = [json.loads(line) for line in f]
dataset = Dataset.from_list(data)
dataset_dict = DatasetDict({"train": dataset})
dataset_dict.push_to_hub("your_huggingface_username/git-prompt-dataset")

结论

通过以上步骤,我们成功利用Llama 3.1 405B创建了一个合成数据集,并借助Nemotron 4模型过滤并优化了数据质量,最后将数据集上传至HuggingFace。这一过程展示了合成数据集构建的各个环节,为需要进行指令微调的大型语言模型开发者提供了实用的指导。

http://www.khdw.cn/news/63074.html

相关文章:

  • 政府网站建设的项目描述百度竞价推广的技巧
  • 怎么推广游戏叫别人玩外贸网站seo推广教程
  • 在线网页下载seo优化诊断工具
  • 咸阳做网站的公司大众点评seo关键词优化
  • 网站建设行业发展史免费刷粉网站推广免费
  • wordpress 图片并列sem和seo有什么区别
  • 给别人做网站被诉侵权排名优化软件
  • 网站开发难题谷歌网站优化推广
  • 网站开发设计需求html网站模板免费
  • 免费做网站真的免费吗合肥seo排名优化公司
  • 电子商务网站开发需求文档百度号码查询平台
  • 阿里云虚拟主机可以做几个网站吗郑州营销型网站建设
  • 5g创业网站建设网络推广怎么找客户资源
  • 合肥做双语外贸网站搜索引擎关键词seo优化公司
  • 做网站建设需要做哪些工作搜索引擎营销方法有哪些
  • 个人电脑做服务器网站网络营销与策划试题及答案
  • 做信息网站要办icp证吗竞价托管公司排名
  • 有网站前台百度引擎入口官网
  • 毕业设计做网站还是系统好郑州网站建设用户
  • 保定免费建站疫情最新消息今天
  • 哈尔滨网站建设费用宁波seo公司排名
  • 做app 的模板下载网站有哪些代运营
  • 流行用什么做网站seo是什么平台
  • 有哪些公司的网站做的很好看有人看片吗免费的
  • 网站前端开发商业策划公司十大公司
  • 温州高端网站建设公司培训机构排名前十
  • 六安网站自然排名优化价格域名备案查询
  • 深圳模板网站制作关键词批量调词软件
  • 服装加工网seo销售是做什么的
  • 内页网站地图 权重新媒体营销案例