当前位置: 首页 > news >正文

设计网站做海报万能引流软件

设计网站做海报,万能引流软件,北京人力资源网站,动态网站建设考试试题六、图 6.1 图的基本概念 图的定义 图:图G由顶点集V和边集E组成,记为G (V, E),其中V(G)表示图G中顶点的有限非空集;E(G) 表示图G中顶点之间的关系(边)集合。若V {v1, v2, … , vn},则用|V|…

六、图

6.1 图的基本概念

图的定义

:图G由顶点集V和边集E组成,记为G = (V, E),其中V(G)表示图G中顶点的有限非空集;E(G) 表示图G中顶点之间的关系(边)集合。若V = {v1, v2, … , vn},则用|V|表示图G中顶点的个 数,也称图G的阶,E = \left \{ (u, v) | u\in V, v\in V \right \},用|E|表示图G中边的条数。

注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集

无向图:若E是无向边(简称边)的有限集合时,则图G为无向图。边是顶点的无序对,记为(v, w)或(w, v),因为(v, w) = (w, v),其 中v、w是顶点。可以说顶点w和顶点v互为邻接点。边(v, w) 依附于顶点w和v,或者说边(v, w)和顶点v、w相关联

有向图:若E是有向边(也称弧)的有限集合时,则图G为有向图。 弧是顶点的有序对,记为<v,w>,其中v、w是顶点,v称为弧尾,w称为弧头,<v,w>称为从顶点v到顶点w的弧,也称 v邻接到w,或w邻接自v。<v,w> ≠<w,v>
                            
简单图——① 不存在重复边; ② 不存在顶点到自身的边  (数据结构课程只探讨 “简单图”)

多重图——图G中某两个结点之间的边数多于一条,又允许顶点通过同一条边和自己关联

顶点的度、入度、出度

无向图:顶点v的度是指依附于该顶点的边的条数,记为TD(v)。
在具有n个顶点、e条边的无向图中, 即无向图的全部顶点的度的和等于边数的2倍

有向图:入度是以顶点v为终点的有向边的数目,记为ID(v);
出度是以顶点v为起点的有向边的数目,记为OD(v)。
顶点v的度等于其入度和出度之和,即TD(v) = ID(v) + OD(v)。
在具有n个顶点、e条边的有向图中,,即入度和出度的数量相等且等于e

顶点的关系描述

路径——顶点vp到顶点vq之间的一条路径是指顶点序列,               
回路——第一个顶点和最后一个顶点相同的路径称为回路或环
简单路径——在路径序列中,顶点不重复出现的路径称为简单路径。 
简单回路——除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路。
路径长度——路径上边的数目
点到点的距离——从顶点u出发到顶点v的最短路径若存在,则此路径的长度称为从u到v的距离。 若从u到v根本不存在路径,则记该距离为无穷(∞)。
无向图中,若从顶点v到顶点w有路径存在,则称v和w是连通
有向图中,若从顶点v到顶点w和从顶点w到顶点v之间都有路径,则称这两个顶点是强连通

图G中任意两个顶点都是连通的,则称图G为连通图,否则称为非连通图。

若图中任何一对顶点都是强连通的,则称此图为强连通图。

研究图的局部—子图、生成子图

设有两个图G = (V, E)和G ′ = (V ′ , E ′ ),若V ′ 是V的子集,且 E ′ 是 E的子集,则称G ′ 是G的子图
若有满足V(G ′ ) = V(G)的子图G ′ ,则称其为G的生成子图

有向图的子图和生成子图也是一样的

无向图中的极大连通子图称为连通分量
       子图必须连通,且包含尽可能多的顶点和边

有向图中的极大强连通子图称为有向图的强连通分量
        
子图必须强连通,同时 保留尽可能多的边

生成树:连通图的生成树是包含图中全部顶点的一个极小连通子图。
若图中顶点数为n,则它的生成树含有 n-1 条边。对生成树而言,若砍去它的一条边,则会变成非连通 图,若加上一条边则会形成一个回路。(因此边要尽可能的少,但要保持连通)

生成森林:在非连通图中,连通分量的生成树构成了非连通图的生成森林

边的权、带权图/网

边的权——在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值
带权图/网——边上带有权值的图称为带权图,也称
带权路径长度——当图是带权图时,一条路径上所有边的权值之和,称为该路径的带权路径长度

特殊形态的图

无向完全图——无向图中任意两个顶点之间都存在边
若无向图的顶点数|V|=n,则\left | E \right |\in \left [ 0,C_{n}^{2}\textrm{} \right ] = \left [ 0,n(n-1)/2 \right ]

有向完全图——有向图中任意两个顶点 之间都存在方向相反的两条弧
若有向图的顶点数|V|=n,则\left | E \right |\in \left [ 0,2C_{n}^{2}\textrm{} \right ] = \left [ 0,n(n-1) \right ]

稀疏图:边数很少的图称为稀疏图  反之称为稠密图
         
——不存在回路,且连通的无向图
n个顶点的树,必有n-1条边。
常见考点:n个顶点的图,若 |E|>n-1,则一定有回路

有向树——一个顶点的入度为0、其余顶点的 入度均为1的有向图,称为有向树

http://www.khdw.cn/news/52550.html

相关文章:

  • 做网站前台需要学什么 后台网络稿件投稿平台
  • 怎么做网站链接支付医院网络销售要做什么
  • 学建站论坛360推广联盟
  • 百度建设网站的目的seo顾问服务四川
  • 企业网站的建立如何带来询盘百度推广怎么样
  • wordpress 添加表情上海关键词优化公司哪家好
  • 办公家具 技术支持 东莞网站建设站长网
  • 江苏网站建设公司排名百度助手官网
  • 263企业邮箱官方入口网页版seo排名优化是什么意思
  • 搬瓦工 做网站企业网站seo多少钱
  • 卡盟怎么网站怎么做水平优化
  • 变态传奇平台seo什么意思
  • 做网站建设工资高吗关键词优化举例
  • 做铝锭的网站短网址生成网站
  • 跨越速运网站谁做的手机制作网页用什么软件
  • 上海网站快速排名关联词有哪些关系
  • 企业网站建设目的意义百度网页版下载
  • 义乌商城集团的网站建设打开百度搜索引擎
  • 官方网站后台图片下载怎么做个人在线做网站免费
  • 怎么自己做论坛网站吗目前常用的搜索引擎有哪些
  • 织梦cms可以做淘宝客网站么大数据精准获客软件
  • 彩票走势网站怎么做的酒店网络营销方式有哪些
  • 一起做网店网站哪里进货的学it学费大概多少钱
  • 手工制作教程站长seo软件
  • 做外单网站南宁网站建设优化服务
  • jsp 网站开发广州百度seo公司
  • 长宁苏州网站建设b站视频推广
  • 中国十大做网站公司排名电商网站seo怎么做
  • 网站html地图导航代码网站如何seo推广
  • 天猫网站做的比京东好电商平台怎么推广