当前位置: 首页 > news >正文

需要手机端网站建设的企业营销推广方案

需要手机端网站建设的企业,营销推广方案,重庆企业品牌网站建设,小程序软件定制文章目录 1、LLaMA1.1、模型结构1.2、训练方式1.3、结论 2、LLaMA-22.1、相比LLaMA1的升级2.3、模型结构2.3.1、MHA, MQA, GQA区别与联系 2.4、训练方式 1、LLaMA 🔥 纯基座语言模型 《LLaMA: Open and Efficient Foundation Language Models》:https:/…

在这里插入图片描述

文章目录

  • 1、LLaMA
    • 1.1、模型结构
    • 1.2、训练方式
    • 1.3、结论
  • 2、LLaMA-2
    • 2.1、相比LLaMA1的升级
    • 2.3、模型结构
      • 2.3.1、MHA, MQA, GQA区别与联系
    • 2.4、训练方式

1、LLaMA

🔥 纯基座语言模型
《LLaMA: Open and Efficient Foundation Language Models》:https://arxiv.org/pdf/2302.13971.pdf

  • 开源!
  • Meta AI 发布,包含 7B、13B、33B 和 65B 四种参数规模的模型。其中llama-13B(gpt-3 1/10大小)在多数benchmarks上超越gpt-3(175B)。
  • 训练数据集使用的都是开源的数据集。

1.1、模型结构

transformer decoder结构
llama在transformer decoder结构上做了3大改进:

  • 【gpt-3采用的】layer-norm -> RMSNorm (Root Mean square Layer Normalization)。transformer的block里是这样的前向流程multi-head-att -> add&norm -> feed-forward -> add&norm。而llama将norm改成里RMSNorm,并将其移到里input层,而不是output层。
  • 【PaLM采用的】采用SwiGLU激活函数
  • 【GPTNeo采用的】采用RoPE位置编码,即苏神提出的RoPE,现在基本是大模型必备的位置编码方式。(具体介绍可看我的另一篇博客:Rotary Position Embedding (RoPE, 旋转式位置编码) | 原理讲解+torch代码实现)

1.2、训练方式

  • 语言模型预训练
  • 优化器:AdamW。
  • 使用cosine learning rate schedule,使得最终学习率等于最大学习率的10%,设置0.1的权重衰减和1.0的梯度裁剪。warmup的step为2000,并根据模型的大小改变学习率和批处理大小。嗯大概是模型变大,学习率变小了一丢丢。
    在这里插入图片描述
  • 另外地,为提高训练效率,还做了些优化操作,如gradient checkpoint等。

1.3、结论

  • 从实验来看,模型越大越好,小模型确实达不到大模型大力出奇迹的效果,而模型结构也并没有那么重要(虽然有很多工作是在改进模型结构本身)。结论部分更强调了大模型比大数据更重要,但都重要,因为增大数据或是增大模型,都能看到性能不断提高。

2、LLaMA-2

《Llama 2: Open Foundation and Fine-Tuned Chat Models》:https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/

  • 开源!
  • 包含3种参数版本:7B、13B 和 34B,70B。
  • LLaMA-2-CHAT 与 OpenAI ChatGPT 效果一样好。

2.1、相比LLaMA1的升级

  • LLama2训练语料相比LLaMA多出40%,上下文长度是由之前的2048升级到4096,可以理解和生成更长的文本。
  • 新增预预训练数据,并注重安全&隐私问题。
  • 训练出了chat版本:llama-2-chat:SFT, RLHF。

在这里插入图片描述

2.3、模型结构

  • 模型结构基本和llama一样,transformer decoder结构,RMSNorm 应用预归一化、使用 SwiGLU 激活函数和旋转位置嵌入RoPE。

  • 上下文长度是由之前的2048升级到4096,可以理解和生成更长的文本。
    7B和13B 使用与 LLaMA 相同的架构,34B和70B模型采用分组查询注意力(GQA)。【下面我展开来讲解】

  • For speed up decoding! 自回归解码的标准做法(past key-value 机制)是缓存序列中先前标记的k,v矩阵,从而加快注意力计算速度。但上下文长度、批量大小、模型大小较大时,多头注意力(MHA)中的kv缓存无疑巨大。

  • 所以采用分组查询注意力机制(GQA)可以提高大模型的推理可扩展性。它的工作原理是将键和值投影在多个头之间共享,而不会大幅降低性能。可以使用具有单个KV投影的原始多查询格式(MQA)或具有8KV投影的分组查询注意力变体(GQA)。

2.3.1、MHA, MQA, GQA区别与联系

LLama2的注意力机制使用了GQA,那么什么是GQA呢?和标准的MHA有什么区别呢?
在这里插入图片描述

  • MHA(Multi-head Attention)是标准的多头注意力机制,h个Query、Key 和 Value 矩阵。

  • MQA(Multi-Query Attention,Fast Transformer Decoding: One Write-Head is All You Need)是多查询注意力的一种变体,也是用于自回归解码的一种注意力机制。与MHA不同的是,MQA 让所有的头之间共享同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。【论文:https://arxiv.org/pdf/1911.02150.pdf】

  • GQA(Grouped-Query Attention,GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints)是分组查询注意力,GQA将查询头分成G组,每个组共享一个Key 和 Value 矩阵。GQA-G是指具有G组的grouped-query attention。GQA-1具有单个组,因此具有单个Key 和 Value,等效于MQA。而GQA-H具有与头数相等的组,等效于MHA。【论文:https://arxiv.org/pdf/2305.13245v1.pdf】

2.4、训练方式

【优化器:AdamW;学习率计划:cosine learning rate schedule。使用 0.1 的权重衰减和1.0的梯度裁剪。】

  • 0、Llama2使用与Llama1相同的分词器;它采用BPE算法,使用 SentencePiece 实现。与Llama 1 一样,将所有数字拆分为单独的数字,并使用字节来分解未知的 UTF-8 字符。词汇量为 32k token
  • 1、使用公开的在线数据进行预训练。
  • 2、SFT:然后通过使用有监督微调创建 Llama-2-chat 的初始版本。
  • 3、RLHF:接下来,llama-2-chat 使用人类反馈强化学习 (RLHF) 进行迭代细化,其中包括拒绝采样和近端策略优化 (PPO)。
http://www.khdw.cn/news/44363.html

相关文章:

  • 佛山家具网站建设公司情感营销经典案例
  • 番禺区建站服务商网站推广做什么
  • 具有口碑的柳州网站建设哪家好引流推广网站
  • 网站建设策划案模板清博大数据舆情监测平台
  • 在建设厅网站上下载资质标准seo培训价格
  • 做网站600搭建一个网站
  • 中英双语网站程序企业qq
  • 上上海网站设计建设今日军事新闻视频
  • 智慧团建网站登录密码百度推广一天烧几千
  • 廊坊做网站电话怎么制作一个网站5个网页
  • 织梦网站地图怎么做sitemap.xml北京谷歌seo公司
  • 用易语言做抢购网站软件下载企业推广网络营销
  • 外贸b2b网站开发电脑系统优化工具
  • 芜湖小学网站建设搜索大全搜索引擎
  • 特供邯郸网站建设如何做推广引流赚钱
  • 定制自己的软件性价比高的seo网站优化
  • 网站怎么弄实名制认证西安疫情最新数据
  • 怎么查网站死链百度自动优化
  • 只用php做网站百度百度推广
  • asp做网站镇江百度关键词优化
  • 求一个dw做的网站如何拿高权重网站外链进行互换?
  • 珠海网站建设防成都调查事务所
  • html如何做网站公司网站如何seo
  • 酷站素材深圳百度网站排名优化
  • 沈阳网站备案照相企业营销推广
  • WordPress程序APP制作seo在线培训机构
  • 排行网站模板网站怎么制作免费的
  • 设计公司的企业使命aso优化推广公司
  • 恶搞网站怎么做百度网站关键词排名助手
  • 福州仓山区网站建设搜索引擎营销的主要方式有哪些?