营销展示型网站模板百度网站免费优化软件下载
张量Tensor
- 创建张量
- 张量的属性
- 张量索引
- 张量运算
- 稀疏张量
- 总结
简单讲讲张量,数学和物理学界以一种方式定义张量,机器学习上则是以另一种方式定义张量,这里的张量也与神经网络联系紧密,神经网络需要进行大量的数学计算,也是张量被设计出来的目的。
张量是存储输入数据的方式,还存储构成神经网络的权重和偏置。
当输入是单一图像时,大多数编程语言会称之为矩阵,这里称为二维张量。
当输入是视频时,大多数编程语言会称之为多维矩阵或多维数组,这里称为n维张量。
听起来有点无聊,大家会认为不过是换个名字,张量到底有什么用呢?
张量是设计用来利用硬件加速的优势
也能通过自动微分处理反向传播
张量也是MindSpore网络运算中的基本数据结构
# 导包
import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor
创建张量
- 根据数据直接生成
data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)
- 从NumPy数组生成
np_array = np.array(data)
x_np = Tensor(np_array)
print(x_np, x_np.shape, x_np.dtype)
上面两种方式输出结果都是[1 0 1 0] (4,) Int64
- 使用init初始化器构造张量
from mindspore.common.initializer import One, Normal# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)
输出结果:
tensor1:
[[1. 1.]
[1. 1.]]
tensor2:
[[-0.00063482 -0.00916224]
[ 0.01324238 -0.0171206 ]]
One是生成一个值全为1的常量数组用于初始化Tensor。
Normal是生成一个服从正态分布的随机数组用于初始化Tensor。
- 继承另一个张量的属性,形成新的张量
from mindspore import opsx_ones = ops.ones_like(x_data)
print(f"Ones Tensor: \n {x_ones} \n")x_zeros = ops.zeros_like(x_data)
print(f"Zeros Tensor: \n {x_zeros} \n")
Ones Tensor:
[1 1 1 1]
Zeros Tensor:
[0 0 0 0]
张量的属性
张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。
张量索引
Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:和 …用于对数据进行切片。
张量运算
张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似.
Tensor能与NumPy相互转换
- Tensor转换为NumPy
t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))
t: [1. 1. 1. 1. 1.] <class ‘mindspore.common.tensor.Tensor’>
n: [1. 1. 1. 1. 1.] <class ‘numpy.ndarray’>
- NumPy转换为Tensor
n = np.ones(5)
t = Tensor.from_numpy(n)
np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))
n: [2. 2. 2. 2. 2.] <class ‘numpy.ndarray’>
t: [2. 2. 2. 2. 2.] <class ‘mindspore.common.tensor.Tensor’>
稀疏张量
稀疏张量是一种特殊张量,其中绝大部分元素的值为零。普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销,所以引入稀疏矩阵存储。
MindSpore现在已经支持最常用的CSR和COO两种稀疏数据格式。
总结
感觉张量就是另类的矩阵,会使用会看会计算就行