当前位置: 首页 > news >正文

mip织梦手机网站模板什么网站都能进的浏览器

mip织梦手机网站模板,什么网站都能进的浏览器,情人节网站源码下载,石家庄网站制作哪家好文章目录 1.堆的实现2.堆的应用--堆排序 大家在学堆的时候,需要有二叉树的基础知识,大家可以看我的二叉树文章:二叉树 1.堆的实现 如果有⼀个关键码的集合 K {k0 , k1 , k2 , …,kn−1 } ,把它的所有元素按完全⼆叉树…

文章目录

  • 1.堆的实现
  • 2.堆的应用--堆排序

大家在学堆的时候,需要有二叉树的基础知识,大家可以看我的二叉树文章:二叉树

1.堆的实现

如果有⼀个关键码的集合 K = {k0 , k1 , k2 , …,kn−1 } ,把它的所有元素按完全⼆叉树的顺序存储⽅
式存储,在⼀个⼀维数组中,并满⾜: Ki <= K2∗i+1 ( Ki >= K2∗i+1 且 Ki <= K2∗i+2 ),
i = 0、1、2… ,则称为⼩堆(或⼤堆)。将根结点最⼤的堆叫做最⼤堆或⼤根堆,根结点最⼩的堆
叫做最⼩堆或⼩根堆。
如下就是堆的例子:
在这里插入图片描述

堆有很多的应用,例如:①堆排序 ②TOP-K问题

堆的底层就是数组,我们主要实现如下接口:

//堆的初始化
void HeapInit(Heap* php);
// 堆的销毁
void HeapDestory(Heap* php);
// 堆的插入
void HeapPush(Heap* php, HPDataType x);
// 堆的删除
void HeapPop(Heap* php);
// 取堆顶的数据
HPDataType HeapTop(Heap* php);
// 堆的数据个数
int HeapSize(Heap* php);
// 堆的判空
int HeapEmpty(Heap* php);

堆结构:

typedef int HPDataType;typedef struct Heap
{HPDataType* _a;int _size;int _capacity;
}Heap;

对于堆的初始化和销毁很简单:

//堆的初始化
void HeapInit(Heap* php)
{assert(php);php->_a = NULL;php->_size = php->_capacity = 0;
}// 堆的销毁
void HeapDestory(Heap* php)
{assert(php);php->_capacity = php->_size = 0;free(php->_a);php->_a = NULL;
}

对于堆的插入,例如我们建一个小根堆,我们每次插入一个数,是把他放在堆尾的(即数组的最后一个元素),然后使用向上调整算法,

Q:什么是向上调整算法?
A:对于我们新插入来的数,我们把他放在堆的最后一个元素上,我们需要不断比较他(即孩子节点)与父节点谁小,若父节点小,则终止循环,若孩子节点小,则需要他和父节点交换位置,并循环下去比,代码如下:

//向上调整算法,建小堆
void AdjustUp(HPDataType* arr, int n)
{int child = n - 1;while (child > 0){int parent = (child - 1) >> 1;if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);}child = parent;}
}

所以,对于堆插入一个元素代码如下:

// 堆的插入
void HeapPush(Heap* php, HPDataType x)
{assert(php);//判断是否需要增容if (php->_capacity == php->_size){int newCapacity = php->_capacity == 0 ? 4 : 2 * php->_capacity;HPDataType* tmp = (HPDataType*)realloc(php->_a, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");exit(-1);}php->_capacity = newCapacity;php->_a = tmp;}php->_a[php->_size++] = x;//向上调整算法AdjustUp(php->_a, php->_size);
}

对于堆的删除,也就是我们要把最小的那个元素pop出来,已知的是堆顶是最小的元素,我们只需要让堆顶元素和最后一个元素互换,然后size–,然后在执行向下调整算法即可:如下

//向下调整算法
void AdjustDown(HPDataType* arr, int n)
{int parent = 0;int child = parent * 2 + 1;while (child < n){if (child + 1 < n && arr[child + 1] < arr[child]) child = child + 1;if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);parent = child;child = parent * 2 + 1;}else break;}
}// 堆的删除
void HeapPop(Heap* php)
{assert(php);assert(!HeapEmpty(php));swap(php->_a[0], php->_a[php->_size - 1]);php->_size--;AdjustDown(php->_a, php->_size);
}

余下的接口:

// 取堆顶的数据
HPDataType HeapTop(Heap* php)
{assert(php);assert(!HeapEmpty(php));return php->_a[0];
}// 堆的数据个数
int HeapSize(Heap* php)
{assert(php);return php->_size;
}
// 堆的判空
int HeapEmpty(Heap* php)
{assert(php);return php->_size == 0 ? 1 : 0;
}

2.堆的应用–堆排序

我们想一想,给我们传入一个数组,让我们堆数组里面的元素进行排序,需要注意的是,向上调整算法和向下调整算法我们都要求除了他,其他的都是一个堆。也就是我们需要对每个数据都进行一遍调整算法,那么向上还是向下呢?我们来分析一下时间复杂度:

  1. 向上调整算法:我们需要从第一个元素开始都进行一遍向上调算法,
    在这里插入图片描述
    因此来说:==向上调整算法的时间复杂度是O(nlogn),==为什么这么高,我们可以想一下,月考后面的元素在二叉树上呈现的是越多的,而且他还要向上移动比较的次数更多,那他的复杂度不就高了吗

  2. 向下调整算法:这里,我们不需要从最后一个元素开始向下调整,我们只需要从最后一个非叶子节点开始向下调整算法即可,
    在这里插入图片描述
    因此向下调整算法的时间复杂度为:O(n)

注意:这里是向下调整算法建堆的时间复杂度是O(n),但是单单一个元素向下调整算法是O(logn)的。

因此对于堆排序,我们采用向下调整算法较优。

堆排序,大家可以参考我的这篇文章:堆排序

http://www.khdw.cn/news/41909.html

相关文章:

  • 专业的上海网站建设公司如何制作一个网址
  • 如何不花钱开发网站爱链接外链购买
  • 开发公司五证电脑清理优化大师
  • 网页设计的网站推荐如何引流客源最快的方法
  • 沈阳市建设工程质量监督局网站北京疫情最新消息
  • php网站怎么做伪静态百度云盘网页版
  • 长沙网站建设优化网络营销推广8种方法
  • 建设政府网站的社会背景石家庄seo培训
  • 长春专业网站建设球队世界排名榜
  • 贵阳手机网站制作谷歌ads
  • 增城头条新闻网站为什么要做seo
  • 山东和城乡建设厅网站宁波品牌网站推广优化
  • 网站建设服务器的选择方式包括哪些软文代写服务
  • 小型网站开发费用宁波seo外包服务商
  • 个人备案的域名拿来做别的网站seo服务优化
  • 在华图做网站编辑网络关键词
  • 做百度推广送网站吗品牌推广的渠道有哪些
  • 做3dmax网站今日头条重大消息
  • 黄浦专业做网站优化师助理
  • 做网站的系统设计企业网站推广方案设计毕业设计
  • asp 做网站搜索引擎哪个好
  • 网站开发demo广告软文范例大全100
  • 制作公司网页图片谷歌优化排名怎么做
  • ppt模板大全免费版网站优化分析
  • 天津网站设计 河西外链网盘系统
  • 江西建设监理协会网站杭州百度人工优化
  • 360网站建设公司哪家好网站查询域名ip
  • 吉林省建设安全信息网百度优化关键词
  • 网站建设 wordpress百度推广费用预算表
  • 佛山移动网站建设公司关键词推广seo