当前位置: 首页 > news >正文

公司部门设置及职责划分太极seo

公司部门设置及职责划分,太极seo,建设网站的法律声明,如何做优酷网站点击赚钱一、关于网站上面的那个教程: 适合PyTorch小白的官网教程:Learning PyTorch With Examples - 知乎 (zhihu.com) 这个链接也是一样的, 总的来说,里面讲了这么一件事: 如果没有pytorch的分装好的nn.module用来继承的话,需要设计…

一、关于网站上面的那个教程:

适合PyTorch小白的官网教程:Learning PyTorch With Examples - 知乎 (zhihu.com)

这个链接也是一样的,

总的来说,里面讲了这么一件事:

如果没有pytorch的分装好的nn.module用来继承的话,需要设计一个神经网络就真的有很多需要处理的地方,明明可以用模板nn.module来继承得到自己的neural network的对象

然后,我们自己这个network里面设计我们想要实现的东西

[ Pytorch教程 ] 训练分类器 - pytorch中文网 (ptorch.com)

这个网站底部的链接还是有一些东西的

二、训练分类器中的代码-查漏补缺,加油!!

1.CIFAR-10中的图像大小为3x32x32,即尺寸为32x32像素的3通道彩色图像

2.torchvision.utils.make_grid()函数的参数意义和用法:

3.利用plt输出图像,必须是(h,w,channels)的顺序,所以从tensor过来需要permute或者transpose
def imshow(img): #定义这里的局部imshowimg = img / 2 + 0.5     # unnormalize,还是要回去的好吧,img=(img-0.5)/0.5这是均值normlizenpimg = img.numpy() #plt只能绘制numpy_array类型plt.imshow(np.transpose(npimg, (1, 2, 0))) #好像必须进行permute或者transpose得到(h,w,channels)
4.和f.max_pool2d是一个可以调用的函数对象,nn.MaxPool2d是一个模板,需要自己设置:

http://t.csdn.cn/mzqv7

5.torch.max(tensor,1)函数的用法:

http://t.csdn.cn/JMBwW

这篇文章讲得很好,

将每一行的最大值组成一个数组

二、代码研读+注释版:

#引入基本的库
import torch
import torchvision
import torchvision.transforms as transforms
#利用DataLoader获取train_loader和test_loader
transform = transforms.Compose( #定义ToTensor 和 3个channel上面的(0.5,0.5)正太分布[transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])#获取trainset,需要经过transform处理
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, #设置train_loader参数:batch_size=4,shuffleshuffle=True, num_workers=2) #这个num_woekers子进程不知道会不会报错#同样的处理获取test_loader
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,shuffle=False, num_workers=2)#定义一个classes数组,其实是用来作为一个map映射使用的
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#展示一些图像,来点直观的感受
import matplotlib.pyplot as plt
import numpy as np# functions to show an imagedef imshow(img): #定义这里的局部imshowimg = img / 2 + 0.5     # unnormalize,还是要回去的好吧,img=(img-0.5)/0.5这是均值normlizenpimg = img.numpy() #plt只能绘制numpy_array类型plt.imshow(np.transpose(npimg, (1, 2, 0))) #好像必须进行permute或者transpose得到(h,w,channels)# get some random training images
dataiter = iter(trainloader)     #dataiter就是迭代器了
images, labels = next(dataiter) #获取第一个images图像数据 和 labels标签 ,注意iter.next()已经改为了next(iter)# show images
imshow(torchvision.utils.make_grid(images)) #以网格的方式显示图像
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4))) #输出labels1-4这样的标题
#定义neural network的结构
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5) #定义输入channel=3,输出channel=5,卷积核5*5,stride(default)=1,padding(default)=0self.pool = nn.MaxPool2d(2, 2)  #定义pooling池化,kernel_size=2*2,stride 右2,且下2self.conv2 = nn.Conv2d(6, 16, 5) #同上输出channel=16self.fc1 = nn.Linear(16 * 5 * 5, 120)  #下面定义了3个Linear函数self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x))) #conv1->relu->poolingx = self.pool(F.relu(self.conv2(x))) #conv2->relu->poolingx = x.view(-1, 16 * 5 * 5)           #调整为第二维数16*5*5的大小的tensorx = F.relu(self.fc1(x))              #fc1->relux = F.relu(self.fc2(x))              #fc2->relux = self.fc3(x)                      #output_linear->得到一个10维度的向量return xnet = Net() #创建一个net对象
#定义loss_func和optimizer优化器
import torch.optim as optimcriterion = nn.CrossEntropyLoss()  #分类的话,使用nn.CrossEntropyLoss()更好
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) #这里使用初级的SGD
#开始train多少个epoch了:
for epoch in range(2):  # 0-1总共2个epochrunning_loss = 0.0  #记录loss数值for i, data in enumerate(trainloader, 0): #利用迭代器获取索引和此次batch数据,0代表从第0个索引的batch开始# get the inputsinputs, labels = data #获取inputs图像数据batch 和 labels标签batch# wrap them in Variable#inputs, labels = Variable(inputs), Variable(labels) ,在新版的pytorch中这一行代码已经不需要了# zero the parameter gradientsoptimizer.zero_grad() #每次进行backward方向传播计算gradient之前先调用optimizer.zero_grad()清空,防止积累# forward + backward + optimize ,标准操作:model + criterion + backward + stepoutputs = net(inputs) loss = criterion(outputs, labels)loss.backward()optimizer.step()# print statistics ,每2000个batch进行对应的输出#running_loss += loss.data[0]  #将这次batch计算的loss加到running_loss厚葬 ,新版的pytorch中tensor.data弃用#改用tensor.item()了running_loss = loss.item()if i % 2000 == 1999:    # print every 2000 mini-batchesprint('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 2000)) #输出:第几个epoch,第几个batch,平均每个batch的lossrunning_loss = 0.0 #归零print('Finished Training')
#展示第一批
dataiter = iter(testloader)
images, labels = next(dataiter) #获取一个batch(上面设置了batch_size=4)的images图像数据 和 labels标签# print images
imshow(torchvision.utils.make_grid(images)) #通过网格形式
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
#使用上述的model对第一批进行预测
outputs = net(Variable(images))
#predicted = outputs.data.max(2,keepdim= True)[1] #这样就获得了一个数组
_, predicted = torch.max(outputs.data, 1)
#注意,classes是一个数组,不过是当作map映射使用的
for j in range(4):print(classes[predicted[j]])

 

#正式开始test了
correct = 0 #正确的数目
total = 0   #总共测试数目
for data in testloader:   #每次获取testloader中的1个batchimages, labels = dataoutputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) #得到预测的结果数组total += labels.size(0)correct += (predicted == labels).sum()    #predicted数组和labels数组逐项比较print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) #输出正确率

 

#对这10种不同的物体对象的检测正确率进行分析:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:images, labels = dataoutputs = net(Variable(images))_, predicted = torch.max(outputs.data, 1)c = (predicted == labels).squeeze() #c就是1个1维向量for i in range(4):               #一个batch有4张图label = labels[i]            #label就是0-9中那个类的indexclass_correct[label] += c[i] #如果c[i]==True就让class_correct+1class_total[label] += 1      #改类图的数目+1for i in range(10): #输出每个类的正确率print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))

 

 

 

 

http://www.khdw.cn/news/22133.html

相关文章:

  • 做那种事的网站评论优化
  • 太原便宜做网站的公司免费seo培训
  • 怎样做网站优化b2b电子商务平台网站
  • 辽宁省建设工程信息网盲盒系统正规的关键词优化软件
  • 石家庄本地招聘信息网上海知名seo公司
  • 中小企业网站建设咨询网络维护
  • linux建立网站如何推广软件
  • 最新网站推广哪家好网站推广的主要方法
  • 企业门户网站的建设与实现免费云服务器
  • 长兴县网站建设阿里云域名注册万网
  • 电商网站用什么做最好怎么开发一个网站
  • 分享网站制作视频营销成功的案例
  • 校园网站开发目的网络营销主要干什么
  • 电子商务网页设计代码重庆seo报价
  • 增城住房和建设局网站无锡百度推广平台
  • 自己一个人做网站可以吗重庆seo扣费
  • 网站如何做淘客网站推广联盟
  • 福州市网站济宁百度推广公司有几家
  • 手机网站优化关于进一步优化
  • 胶州住房和城乡建设厅网站免费网站收录入口
  • 长春建设平台网站的公司商丘网络推广哪家好
  • 中企动力深圳分公司seo用什么工具
  • 做网站 广州惠州seo排名收费
  • 哪个网站专注做微信模板搜索引擎优化的五个方面
  • 网站收缩目录模板郑州seo顾问阿亮
  • 成都网站制作怎么样百度网盘官网登录入口
  • 网站添加cms上海优化排名网站
  • 网站规划建设交换神器
  • 济源做网站的公司网络游戏推广员是做什么的
  • 建一个网站做cpa联盟网站首页排名