当前位置: 首页 > news >正文

网站开发中 敬请期待网站工具查询

网站开发中 敬请期待,网站工具查询,网站开发的技术,苏州网站建设网站建设时序预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神…

时序预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络时间序列预测;
2.运行环境为Matlab2021b;
3.单变量时间序列预测;
4.data为数据集,excel数据,MainTCN_BiLSTMTS.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出RMSE、MAE、MAPE多指标评价。

模型描述

由于TCN 具有扩张因果卷积结构,拥有突出的特征提取能力,因此可对原始特征进行融合获得高维的抽象特征,加强了对特征信息的挖掘。而
BiLSTM 网络具有强大的时序预测能力,将TCN 和BiLSTM网络结合,通过TCN 特征提取后输入至BiLSTM 网络,提高了BiLSTM网络记忆单元的处理效率,使得预测模型更有效地学习时间序列的复杂交互关系。因此,本文搭建了TCN-BiLSTM 预测模型。

TCN-BiLSTM是一种将时间卷积神经网络(TCN)和双向长短期记忆神经网络(BiLSTM)结合在一起的神经网络模型。TCN是一种能够处理序列数据的卷积神经网络,它能够捕捉到序列中的长期依赖关系。BiLSTM则是一种具有记忆单元的递归神经网络,它能够处理序列数据中的短期和长期依赖。
TCN-BiLSTM模型的输入可以是多个序列,每个序列可以是不同的特征或变量。例如,如果我们想预测某个城市未来一周的平均温度,我们可以将过去一段时间内的温度、湿度、气压等多个变量作为输入序列。模型的输出是一个值,即未来某个时间点的平均温度。
在TCN-BiLSTM中,时间卷积层用于捕捉序列中的长期依赖关系,BiLSTM层用于处理序列中的短期和长期依赖。多个输入序列被合并成一个张量,然后送入TCN-BiLSTM网络进行训练。在训练过程中,模型优化目标是最小化预测输出与真实值之间的差距。
TCN-BiLSTM模型在时间序列预测和回归问题上表现良好,特别是对于长期依赖的序列数据。它可以被用于许多应用场景,例如股票价格预测、交通流量预测等。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.khdw.cn/news/16897.html

相关文章:

  • Iis 建网站为什么说没有该用户网络优化大师app
  • 金昌网站建设360优化大师官方下载最新版
  • 做网站开票几个税点免费网站在线观看人数在哪
  • 网站整体设计如何提升网站搜索排名
  • 宣传片制作公司南京青岛关键词推广seo
  • 做仿牌网站空间超级seo工具
  • 1.简述网站建设流程单页关键词优化费用
  • 营销网站是什么意思google关键词工具
  • 制作b2c网站优质的seo快速排名优化
  • 长春网站建设加q479185700登录百度app
  • 烟台汽车网站建设网络热词
  • 东莞网站制作方案定制宁波seo深度优化平台有哪些
  • 河北建筑网站门户网站排行榜
  • 沈阳网站建设成创万网域名注册官网查询
  • 国外做直播网站网络舆情分析报告范文
  • 东莞网站建设东莞最新旅游热点
  • 网站跟系统的区别是灰色行业推广平台
  • 大淘客做网站怎么在百度上打广告
  • 博客用来做微网站代刷网站推广
  • wordpress聊天室最好用的手机优化软件
  • 承德网站建设上海搜索引擎优化公司排名
  • 公网ip做网站访问不网站免费网站免费优化优化
  • 苏州建网站的公司哪家公司好seo优化师
  • 网站显示内容不显示百度新闻搜索
  • 可以做日语翻译的兼职网站百度灰色词排名代发
  • 网站建设行业资讯作品推广
  • 天津做网站的公司有哪家电子商务网络营销
  • 域名 做网站和邮箱优化seo深圳
  • 招聘网站做精准 置顶seo网络推广优化
  • 《奖励自己的网站》小程序流量点击推广平台