当前位置: 首页 > news >正文

做暧暧暖网站日本网店seo关键词

做暧暧暖网站日本,网店seo关键词,中介网站模板,建筑网官网查询一、YOLO V10 在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经…

一、YOLO V10

在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经完全超越之前的所有版本, YOLO-V10 由清华大学提供,采用无 NMS 训练和效率-精度驱动架构,提供目前最先进的性能和延迟。

在这里插入图片描述

从上图中的对比效果可以明显看出, YOLO-V10 不仅在速度上得到了极大的提升,精度同样也得到了明显的提升。主要得益于其 无 NMS 训练的重大变化。

在模型上 V10 和之前的版本类似,包括不同大小的模型,从小到大包括:

  • YOLOv10-N:用于资源极其有限环境的纳米版本。
  • YOLOv10-S:兼顾速度和精度的小型版本。
  • YOLOv10-M:通用中型版本。
  • YOLOv10-B:平衡型,宽度增加,精度更高。
  • YOLOv10-L:大型版本,精度更高,但计算资源增加。
  • YOLOv10-X:超大型版本可实现最高精度和性能。

模型的比较如下:

在这里插入图片描述

更多的介绍可以参考官方的文档:

https://docs.ultralytics.com/de/models/yolov10/#model-variants

本文借助 ultralytics 框架对 YOLO V10 迁移训练自定义的目标检测模型,本次实验训练一个人脸检测模型,包括数据标注、数据拆分、训练、测试等过程。

实验采用 ultralytics 框架,可以帮助开发人员高效完成数据训练和验证任务,由于 ultralytics 默认采用的为 PyTorch 框架,因此实验前请安装好 cudatorch 环境,如果没有 GPU 环境,由于YOLO V10 已经足够轻量级,使用CPU 也是可以训练。

安装 ultralytics 库:

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

如果已经安装,需要更新到最新版本:

pip install --upgrade ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

ultralytics 使用文档:

https://docs.ultralytics.com/zh/quickstart/#use-ultralytics-with-python

测试 YOLO V10 的效果:

测试图片:
在这里插入图片描述

这里使用 yolov10n 模型,如果模型不存在会自动下载

from ultralytics import YOLO
# Load a model
model = YOLO('yolov10n.pt')results = model.predict('./img/1.png')
results[0].show()

在这里插入图片描述

在这里插入图片描述

二、准备训练数据及标注

图像数据可以从网上找一些或者自己拍摄,我这里准备了一些 人 的图片:

在这里插入图片描述

这里可以准备两个目录,data/imagesdata/labels,其中 labels 存放标注后的文件,将收集到的图像放在 images 目录下:

在这里插入图片描述

下面使用 labelimg 工具进行标注,如果没有安装,使用下面命令安装:

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

然后在控制台输入:labelimg 打开可视化工具:

在这里插入图片描述

注意:数据集格式默认是 VOC 格式的,要选择为 YOLO ,我这里的人脸标签为 face ,这个后面需要使用到。

标注完成后,可以在 /data/labels 下看到标注后的文件:

在这里插入图片描述

三、数据拆分

这里拆分为 90% 的训练集,10% 的验证集,这部分和之前训练 YOLO V8 时一致,拆分脚本如下,

import os
import shutil
from tqdm import tqdm# 图片地址
image_dir = "data/images/"
# 标准文件地址
label_dir = "data/labels/"
# 训练集的比例
training_ratio = 0.9
# 拆分后数据的位置
train_dir = "train_data"def split_data():list = os.listdir(image_dir)all = len(list)train_count = int(all * training_ratio)train_images = list[0:train_count]val_images = list[train_count:]# 训练集目录os.makedirs(os.path.join(train_dir, "images/train"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/train"), exist_ok=True)# 验证集目录os.makedirs(os.path.join(train_dir, "images/val"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/val"), exist_ok=True)# 训练集with open(os.path.join(train_dir, "train.txt"), "w") as file:file.write("\n".join([train_dir + "images/train/" + image_file for image_file in train_images]))print("save train.txt success!")# 拷贝数据for item in tqdm(train_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/train/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/train/"))# 验证集with open(os.path.join(train_dir, "val.txt"), "w") as file:file.write("\n".join([train_dir + "images/val/" + image_file for image_file in val_images]))print("save val.txt success!")# 拷贝数据for item in tqdm(val_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/val/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/val/"))if __name__ == '__main__':split_data()

在这里插入图片描述
可以在 train_data 中看到拆分后的数据集格式:

在这里插入图片描述

四、训练

使用 ultralytics 框架训练非常简单,仅需三行代码即可完成训练,不过在训练前需要编写 YAML 配置信息,主要标记数据集的位置。

创建 face.yaml 文件,写入下面内容:


path: D:/pyProject/yolov10/train_data # 数据集的根目录, 建议使用绝对路径
train: images/train # 训练集图像目录
val: images/val # 验证集图像目录
test: # test images (optional)# 分类
names:0: face

注意分类中的 face 就是上面标注时的标签名。

开始训练:

from ultralytics import YOLO# 加载模型
model = YOLO('yolov10n.pt')# 训练
model.train(data='face.yaml', # 训练配置文件epochs=100, # 训练的周期imgsz=640, # 图像的大小device=[0], # 设备,如果是 cpu 则是 device='cpu'workers=0,lr0=0.0001, # 学习率batch=8, # 批次大小amp=False # 是否启用混合精度训练
)

运行后可以看到打印的网络结构:

在这里插入图片描述

训练中:

在这里插入图片描述

训练结束后可以在 runs 目录下面看到训练的结果:

在这里插入图片描述

其中 weights 下面的就是训练后保存的模型,这里可以先看下训练时 loss 的变化图:

在这里插入图片描述

五、模型测试

runs\detect\train\weights 下可以看到 best.ptlast.pt 两个模型,表示最佳和最终模型,下面使用 best.pt 模型进行测试

from ultralytics import YOLO
from matplotlib import pyplot as plt
import os
plt.rcParams['font.sans-serif'] = ['SimHei']# 测试图片地址
base_path = "test"
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')
for img_name in os.listdir(base_path):img_path = os.path.join(base_path, img_name)image = plt.imread(img_path)# 预测results = model.predict(image, device='cpu')boxes = results[0].boxes.xyxyconfs = results[0].boxes.confax = plt.gca()for index, boxe in enumerate(boxes):x1, y1, x2, y2 = boxe[0], boxe[1], boxe[2], boxe[3]score = confs[index].item()ax.add_patch(plt.Rectangle((x1, y1), (x2 - x1), (y2 - y1), linewidth=2, fill=False, color='red'))plt.text(x=x1, y=y1-10, s="{:.2f}".format(score), fontsize=15, color='white',bbox=dict(facecolor='black', alpha=0.5))plt.imshow(image)plt.show()

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

http://www.khdw.cn/news/12659.html

相关文章:

  • 手机影视网站制作seo技术建站
  • 网站seo优化外包建站系统哪个好
  • dede的网站地图济南搜索引擎优化网站
  • 海南省城乡和建设厅网站网站建设方案书
  • 电商型网站开发多少钱如何注册一个网站
  • 小企业网站建设在哪里国家卫健委:不再发布每日疫情信息
  • 黄岐网站建设推广衣服的软文
  • 竞价托管外包公司兰州seo优化公司
  • 建设学校网站的操作流程具体老鬼seo
  • 遵义县公司网站建设百度app客服人工在线咨询
  • 北京做网站哪个公司好个人网站建站教程
  • 北京品牌网站开发东莞网站推广优化网站
  • 网页qq登陆手机版网址超云seo优化
  • asp网站设计代做网站推广seo
  • 深圳网站建设官网惠州网络推广
  • 网站运营软件淘宝店铺推广方式有哪些
  • 为什么我的网站无法访问微信crm系统软件
  • 个人营销型网站中国免费网站服务器2020
  • 从用户旅程角度做网站分析快速优化排名公司推荐
  • 移动端电商网站搜索关键词的网站
  • 主机 建设网站seo文章推广
  • 制作一个网站的流程商务软文写作300字
  • 怎么做网站dreamwave制作一个网站步骤
  • 查建设工程规划许可证网站seo外包一共多少钱
  • 昌邑做网站的公司怎么看百度关键词的搜索量
  • 做壁纸网站正规赚佣金的平台
  • 企业网站的用户需求分析青岛网站建设优化
  • 怎样在别人网站做加强链接百度用户客服电话
  • 好听的公司名字网站seo系统
  • 呼市賽罕区信息网站做一顿饭工作域名查询注册商