当前位置: 首页 > news >正文

企业网站的用户需求分析青岛网站建设优化

企业网站的用户需求分析,青岛网站建设优化,老河口网站,app设计流程1. 三相静止坐标系与两相静止坐标系的坐标变换―αβ0坐标变换 若上述x、y坐标系在空间静止不动,且x轴与A轴重合,即,如图1所示,则为两相静止坐标系,常称为坐标系,考虑到零轴分量,也称为αβ0坐标…

1. 三相静止坐标系与两相静止坐标系的坐标变换―αβ0坐标变换

       若上述x、y坐标系在空间静止不动,且x轴与A轴重合,即\theta =0,如图1所示,则为两相静止坐标系,常称为\alpha \beta坐标系,考虑到零轴分量,也称为αβ0坐标系。

图1.  ABC坐标系与\alpha \beta坐标系

       从三相静止坐标系到两相静止坐标系的变换称为三相-两相变换,简称3/2变换。由下式,

\left[ \begin{array}{c} i_A \\ i_B \\ i_C \end{array} \right] = \left[ \begin{array}{ccc} \cos\theta & -\sin\theta & 1 \\ \cos(\theta - 120^\circ) & -\sin(\theta - 120^\circ) & 1 \\ \cos(\theta + 120^\circ) & -\sin(\theta + 120^\circ) & 1 \end{array} \right] \left[ \begin{array}{c} i_x \\ i_y \\ i_0 \end{array} \right] = \mathbf{C}_{2r/3s} \left[ \begin{array}{c} i_x \\ i_y \\ i_0 \end{array} \right]

\theta =0可得

\left[ \begin{array}{c} i_a \\ i_\beta \\ i_0 \end{array} \right] = \frac{2}{3} \left[ \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \\ i_C \end{array} \right]      (1)

C_{3/2}表示从三相静止坐标系到两相静止坐标系的变换矩阵,则

\mathbf{C}_{3/2} = \frac{2}{3} \left[ \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right]      (2)

相应地,从两相坐标系到三相坐标系的变换矩阵为

\mathbf{C}_{2/3} = \mathbf{C}_{3/2}^{-1} = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 1 \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 1 \end{array} \right]      (3)

式(2)和式(3)不满足功率不变约束。由上一节式(9),令\theta =0可得满足功率不变约束的从三相静止坐标系到两相静止坐标系的变换矩阵

\mathbf{C}_{3/2} = \sqrt{\frac{2}{3}} \left[ \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]      (4)

相应地,从两相坐标系到三相坐标系满足功率不变约束的变换矩阵为

\mathbf{C}_{2/3} = \mathbf{C}_{3/2}^{-1} = \mathbf{C}_{3/2}^T = \sqrt{\frac{2}{3}} \left[ \begin{array}{ccc} 1 & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \end{array} \right]     (5)

       在实际应用中,上述坐标变换关系常可进一步简化。例如,在交流调速系统中,交流电机通常为中性点隔离的三相星型连接(Y接),有i_{A}+i_{B}+i_{C}=0,则i_{0}=0,因此可将零轴分量去掉。同时,由于三相电流中只有两相独立,三相系统中的电流可以只用i_{A}i_{B}表达,而将C相电流用i_{C}=-(i_{A}+i_{B})代入。相应的坐标变换关系简化为

\left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \end{array} \right] \text{or} \left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] = \left[ \begin{array}{cc} \sqrt{\frac{2}{3}} & 0 \\ \frac{1}{\sqrt{2}} & \sqrt{2} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \end{array} \right]     (6)

以及

\left[ \begin{array}{c} i_A \\ i_B \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{array} \right] \left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] \text{or} \left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] = \left[ \begin{array}{cc} \sqrt{\frac{2}{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \end{array} \right]     (7)

        可见,三相/两相变换(3/2变换)是任意速xy0坐标系当其转速等于零时的特例。3/2变换是静止坐标系之间的变换,因此其变换矩阵中所有元素均与坐标旋转角\theta无关,都是常数。

        隐极三相交流电机的定子和转子的电感矩阵,经过\alpha \beta 0变换将成为对角矩阵。因为,从三相变为两相系统后,由于\alpha轴和\beta轴在空间互相垂直,互感为零,而零序又是一个孤立的系统,所以

\alpha\beta、0三根轴线之间达到“解耦”。这一点,以后在感应电机的分折中将会用到。

2. 三相静止坐标系与两相转子速旋转坐标系的坐标变换―dq0坐标变换

       

图2.dq0坐标变换

        dq0坐标系是一种与转子一起旋转的两相坐标系和零序系统的组合。若转子为凸极,则d轴(直轴)通常与凸极的中心轴线重合,q轴(交轴)超前于d轴90“电角,如图2所示。dq0 变换是从静止的ABC坐标系变换到转子速旋转的dq0坐标系的一种变换。dq0分量首先由帕克(Park)提出.所以亦称为帕克分量。显然,dq0坐标变换的变换矩阵在形式上与xy0坐标变换的变换矩阵完全相同,

只不过,dq0坐标系是一种与转子一起旋转的坐标系,而xy0坐标系是一种以任意速旋转的坐标系。可见,dq0坐标系是任意速xy0坐标系当其转速等于转子速时的特例,当然,\alpha \beta 0坐标系也是

xy0坐标系当其转速等于零时的特例。

       dq0坐标变换主要用于凸极同步电机的瞬态分析中,在转速为常值和磁路为线性的条件下,它可以把含有时变系数的自感和互感所组成的定子电感矩阵,通过坐标变换,变成元素为常数的对角线矩阵,达到“解耦”和“元素常数化”的目的,使凸极电机的分析大为简化。

       \alpha \beta 0坐标变换和dq0坐标变换是电机瞬态分析中最常用的坐标变换。

http://www.khdw.cn/news/12626.html

相关文章:

  • 怎样在别人网站做加强链接百度用户客服电话
  • 好听的公司名字网站seo系统
  • 呼市賽罕区信息网站做一顿饭工作域名查询注册商
  • 龙华网站建设销售员快手流量推广网站
  • 网站如何做h5动态页面seo网站关键词优化方法
  • 中国住房和城乡建设部网站首页长沙网络公司营销推广
  • 自己建网站流程要学什么seo关键词排名优化推荐
  • 医院 网站建设 中企动力东莞新闻最新消息今天
  • 做网站还是订阅号深圳网络推广哪家公司好
  • 小程序模板做视频网站站长统计官方网站
  • 青岛网站建设公司 中小企业补贴百度搜索指数排名
  • 做网站跟做APP哪个容易太原seo计费管理
  • 美团网网站建设分析软文外链购买平台
  • 网站优化收费福建百度推广开户
  • 做网站要和企业logo软文营销写作技巧
  • 做照片的网站有哪些合肥网站排名提升
  • wordpress 4.2.1西安网站seo厂家
  • 做减肥网站百度网址链接是多少
  • 北京网站开发学习百度网站怎么提升排名
  • 网站建设 公司 天津知乎软文推广
  • 广西免费网站制作网络营销的渠道
  • 网站营销目标百度图片搜索入口
  • crm管理平台优化软件有哪些
  • 做小程序好还是做微网站好百度seo排名推广
  • 怎么做自己的手机网站佛山网站优化
  • dedecms网站搬家后登陆后台跳转后一片空白是怎么回事郑州seo使用教程
  • 青岛市疾病预防控制中心紧急提示国外搜索引擎优化
  • wordpress网站被攻击网址导航
  • 番禺网站建设哪里有网上接单平台有哪些
  • 淄博网站排名外包博客优化网站seo怎么写