当前位置: 首页 > news >正文

做日历的网站教育培训网站设计

做日历的网站,教育培训网站设计,乌鲁木齐今天最新消息,福州专业网站设计公司动手学深度学习 这里写自定义目录标题 注意力加性注意力缩放点积注意力多头注意力自注意力Transformer 注意力 注意力汇聚的输出为值的加权和 查询的长度为q,键的长度为k,值的长度为v。 q ∈ 1 q , k ∈ 1 k , v ∈ R 1 v {\bf{q}} \in {^{1 \times…

动手学深度学习

这里写自定义目录标题

  • 注意力
  • 加性注意力
  • 缩放点积注意力
  • 多头注意力
  • 自注意力
  • Transformer

注意力

注意力汇聚的输出为值的加权和
注意力汇聚的输出为值的加权和

查询的长度为q,键的长度为k,值的长度为v。
q ∈ 1 × q , k ∈ 1 × k , v ∈ R 1 × v {\bf{q}} \in {^{1 \times q}},{{\bf{k}}} \in {^{1 \times k}},{{\bf{v}}} \in {\mathbb{R}^{1 \times v}} q1×q,k1×k,vR1×v
n个查询和m个键-值对
Q ∈ n × q , K ∈ m × k , V ∈ R m × v {\bf{Q}} \in {^{n \times q}},{\bf{K}} \in {^{m \times k}},{\bf{V}} \in {\mathbb{R}^{m \times v}} Qn×q,Km×k,VRm×v
a ( Q , K ) ∈ R n × m {\bf{a}}\left( {{\bf{Q}},{\bf{K}}} \right) \in {\mathbb{R}^{n \times m}} a(Q,K)Rn×m注意力评分函数
α ( Q , K ) = s o f t m a x ( a ( Q , K ) ) = exp ⁡ ( a ( Q , K ) ) ∑ j = 1 m exp ⁡ ( a ( Q , K ) ) ∈ R n × m {\boldsymbol{\alpha}} \left( {{\bf{Q}},{\bf{K}}} \right) = {\rm{softmax}}\left( {{\bf{a}}\left( {{\bf{Q}},{\bf{K}}} \right)} \right) = \frac{{\exp \left( {{\bf{a}}\left( {{\bf{Q}},{\bf{K}}} \right)} \right)}}{{\sum\limits_{j = 1}^m {\exp \left( {{\bf{a}}\left( {{\bf{Q}},{\bf{K}}} \right)} \right)} }} \in {\mathbb{R}^{n \times m}} α(Q,K)=softmax(a(Q,K))=j=1mexp(a(Q,K))exp(a(Q,K))Rn×m注意力权重
f ( Q , K , V ) = α ( Q , K ) ⊤ V ∈ R n × v f({\bf{Q}},{\bf{K}},{\bf{V}}) = {\boldsymbol{\alpha}} {\left( {{\bf{Q}},{\bf{K}}} \right)^ \top }{\bf{V}} \in {\mathbb{R}^{n \times v}} f(Q,K,V)=α(Q,K)VRn×v注意力汇聚函数

加性注意力

q ∈ R 1 × q , k ∈ R 1 × k {\bf{q}} \in {\mathbb {R}^{1 \times q}},{\bf{k}} \in {\mathbb {R}^{1 \times k}} qR1×q,kR1×k
W q ∈ R h × q , W k ∈ R h × k , w v ∈ R h × 1 {{\bf{W}}_q} \in {{\mathbb R}^{h \times q}},{{\bf{W}}_k} \in {{\mathbb R}^{h \times k}},{{\bf{w}}_v} \in {{\mathbb R}^{h \times 1}} WqRh×q,WkRh×k,wvRh×1
a ( q , k ) = w v ⊤ t a n h ( W q q ⊤ + W k k ⊤ ) ∈ R a({\bf{q}},{\bf{k}}) = {\bf{w}}_v^ \top {\rm{tanh}}({{\bf{W}}_q}{{\bf{q}}^ \top } + {{\bf{W}}_k}{{\bf{k}}^ \top }) \in \mathbb {R} a(q,k)=wvtanh(Wqq+Wkk)R注意力评分函数

缩放点积注意力

q ∈ R 1 × d , k ∈ R 1 × d , v ∈ R 1 × v {\bf{q}} \in \mathbb{R}{^{1 \times d}},{\bf{k}} \in \mathbb{R}{^{1 \times d}},{\bf{v}} \in {{\mathbb R}^{1 \times v}} qR1×d,kR1×d,vR1×v
a ( q , k ) = 1 d q k ⊤ ∈ R a\left( {{\bf{q}},{\bf{k}}} \right) = \frac{1}{{\sqrt d }}{\bf{q}}{{\bf{k}}^ \top } \in \mathbb{R} a(q,k)=d 1qkR注意力评分函数
f ( q , k , v ) = α ( q , k ) ⊤ v = s o f t m a x ( 1 d q k ⊤ ) v ∈ R 1 × v f({\bf{q}},{\bf{k}},{\bf{v}}) = \alpha {\left( {{\bf{q}},{\bf{k}}} \right)^ \top }{\bf{v}} = {\rm{softmax}}\left( {\frac{1}{{\sqrt d }}{\bf{q}}{{\bf{k}}^ \top }} \right){\bf{v}} \in {{\mathbb R}^{1 \times v}} f(q,k,v)=α(q,k)v=softmax(d 1qk)vR1×v注意力汇聚函数

n个查询和m个键-值对
Q ∈ R n × d , K ∈ R m × d , V ∈ R m × v \mathbf Q\in\mathbb R^{n\times d}, \mathbf K\in\mathbb R^{m\times d}, \mathbf V\in\mathbb R^{m\times v} QRn×d,KRm×d,VRm×v
a ( Q , K ) = 1 d Q K ⊤ ∈ R n × m {\bf{a}}\left( {{\bf{Q}},{\bf{K}}} \right) = \frac{1}{{\sqrt d }}{\bf{Q}}{{\bf{K}}^ \top } \in {\mathbb{R}^{n \times m}} a(Q,K)=d 1QKRn×m注意力评分函数
f ( Q , K , V ) = α ( Q , K ) ⊤ V = s o f t m a x ( 1 d Q K ⊤ ) V ∈ R n × v f({\bf{Q}},{\bf{K}},{\bf{V}}) = {\boldsymbol{\alpha}} {\left( {{\bf{Q}},{\bf{K}}} \right)^ \top }{\bf{V}} ={\rm{softmax}}\left( {\frac{1}{{\sqrt d }}{\bf{Q}}{{\bf{K}}^ \top }} \right){\bf{V}} \in {\mathbb{R}^{n \times v}} f(Q,K,V)=α(Q,K)V=softmax(d 1QK)VRn×v注意力汇聚函数

多头注意力

q ∈ R 1 × d q , k ∈ R 1 × d k , v ∈ R 1 × d v {\bf{q}} \in {{\mathbb R}^{1 \times {d_q}}},{\bf{k}} \in {{\mathbb R}^{1 \times {d_k}}},{\bf{v}} \in {{\mathbb R}^{1 \times {d_v}}} qR1×dq,kR1×dk,vR1×dv
W i ( q ) ∈ R p q × d q , W i ( k ) ∈ R p k × d k , W i ( v ) ∈ R p v × d v {\bf{W}}_i^{(q)} \in {{\mathbb R}^{{p_q} \times {d_q}}},{\bf{W}}_i^{(k)} \in {{\mathbb R}^{{p_k} \times {d_k}}},{\bf{W}}_i^{(v)} \in {{\mathbb R}^{{p_v} \times {d_v}}} Wi(q)Rpq×dq,Wi(k)Rpk×dk,Wi(v)Rpv×dv
h i = f ( W i ( q ) q ⊤ , W i ( k ) k ⊤ , W i ( v ) v ⊤ ) ∈ R 1 × p v {{\bf{h}}_i} = f\left( {{\bf{W}}_i^{(q)}{{\bf{q}}^ \top },{\bf{W}}_i^{(k)}{{\bf{k}}^ \top },{\bf{W}}_i^{(v)}{{\bf{v}}^ \top }} \right) \in {{\mathbb R}^{{1 \times p_v}}} hi=f(Wi(q)q,Wi(k)k,Wi(v)v)R1×pv注意力头

W o ∈ R p o × h p v {{\bf{W}}_o} \in {{\mathbb R}^{{p_o} \times h{p_v}}} WoRpo×hpv
W o [ h 1 ⊤ ⋮ h h ⊤ ] ∈ R p o {{\bf{W}}_o}\left[ {\begin{array}{c} {{{\bf{h}}_1^ \top}}\\ \vdots \\ {{{\bf{h}}_h^ \top}} \end{array}} \right] \in {{\mathbb R}^{{p_o}}} Wo h1hh Rpo

p q h = p k h = p v h = p o p_q h = p_k h = p_v h = p_o pqh=pkh=pvh=po
多头注意力:多个头连结然后线性变换
多头注意力:多个注意力头连结然后线性变换

自注意力

x i ∈ R 1 × d , X = [ x 1 ⋯ x n ] ∈ R n × d {{\bf{x}}_i} \in {{\mathbb R}^{1 \times d}},{\bf{X}} = \left[ {\begin{array}{c} {{{\bf{x}}_1}}\\ \cdots \\ {{{\bf{x}}_n}} \end{array}} \right] \in {{\mathbb R}^{n \times d}} xiR1×d,X= x1xn Rn×d
Q = X , K = X , V = X {\bf{Q}} = {\bf{X}},{\bf{K}} = {\bf{X}},{\bf{V}} = {\bf{X}} Q=X,K=X,V=X
f ( Q , K , V ) = α ( Q , K ) ⊤ V = s o f t m a x ( 1 d Q K ⊤ ) V ∈ R n × d f({\bf{Q}},{\bf{K}},{\bf{V}}) = {\boldsymbol{\alpha}} {\left( {{\bf{Q}},{\bf{K}}} \right)^ \top }{\bf{V}} ={\rm{softmax}}\left( {\frac{1}{{\sqrt d }}{\bf{Q}}{{\bf{K}}^ \top }} \right){\bf{V}} \in {\mathbb{R}^{n \times d}} f(Q,K,V)=α(Q,K)V=softmax(d 1QK)VRn×d
y i = f ( x i , ( x 1 , x 1 ) , … , ( x n , x n ) ) ∈ R d {{\bf{y}}_i} = f\left( {{{\bf{x}}_i},\left( {{{\bf{x}}_1},{{\bf{x}}_1}} \right), \ldots ,\left( {{{\bf{x}}_n},{{\bf{x}}_n}} \right)} \right) \in {{\mathbb R}^d} yi=f(xi,(x1,x1),,(xn,xn))Rd

n个查询和m个键-值对
Q = t a n h ( W q X ) ∈ R n × d {\bf{Q}} = {\rm{tanh}}\left( {{{\bf{W}}_q}{\bf{X}}} \right) \in {{\mathbb R}^{n \times d}} Q=tanh(WqX)Rn×d
K = t a n h ( W k X ) ∈ R m × d {\bf{K}} = {\rm{tanh}}\left( {{{\bf{W}}_k}{\bf{X}}} \right) \in {{\mathbb R}^{m \times d}} K=tanh(WkX)Rm×d
V = t a n h ( W v X ) ∈ R m × v {\bf{V}} = {\rm{tanh}}\left( {{{\bf{W}}_v}{\bf{X}}} \right) \in {{\mathbb R}^{m \times v}} V=tanh(WvX)Rm×v

J. Xu, F. Zhong, and Y. Wang, “Learning multi-agent coordination for enhancing target coverage in directional sensor networks,” in Proc. Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, Dec. 2020, pp. 1–16.
https://github.com/XuJing1022/HiT-MAC/blob/main/perception.py

x i ∈ R 1 × d i n , X = [ x 1 ⋯ x n m ] ∈ R n m × d i n {{\bf{x}}_i} \in {{\mathbb R}^{1 \times d_{in}}},{\bf{X}} = \left[ {\begin{array}{c} {{{\bf{x}}_1}}\\ \cdots \\ {{{\bf{x}}_{nm}}} \end{array}} \right] \in {{\mathbb R}^{nm \times d_{in}}} xiR1×din,X= x1xnm Rnm×din
W ∈ R d a t t × d i n {\bf{W}} \in {{\mathbb R}^{d_{att}\times d_{in}}} WRdatt×din
Q = t a n h ( W q X ⊤ ) ⊤ ∈ R n m × d a t t {\bf{Q}} = {\rm{tanh}}\left( {{{\bf{W}}_q}{\bf{X}}^\top} \right)^\top \in {{\mathbb R}^{nm \times d_{att}}} Q=tanh(WqX)Rnm×datt
K = t a n h ( W k X ⊤ ) ⊤ ∈ R n m × d a t t {\bf{K}} = {\rm{tanh}}\left( {{{\bf{W}}_k}{\bf{X}}^\top} \right)^\top \in {{\mathbb R}^{nm \times d_{att}}} K=tanh(WkX)Rnm×datt
V = t a n h ( W v X ⊤ ) ⊤ ∈ R n m × d a t t {\bf{V}} = {\rm{tanh}}\left( {{{\bf{W}}_v}{\bf{X}}^\top} \right)^\top \in {{\mathbb R}^{nm \times d_{att}}} V=tanh(WvX)Rnm×datt
f ( Q , K , V ) = α ( Q , K ) ⊤ V = s o f t m a x ( 1 d Q K ⊤ ) V ∈ R n m × d a t t f({\bf{Q}},{\bf{K}},{\bf{V}}) = {\boldsymbol{\alpha}} {\left( {{\bf{Q}},{\bf{K}}} \right)^ \top }{\bf{V}} ={\rm{softmax}}\left( {\frac{1}{{\sqrt d }}{\bf{Q}}{{\bf{K}}^ \top }} \right){\bf{V}} \in {{\mathbb R}^{nm \times d_{att}}} f(Q,K,V)=α(Q,K)V=softmax(d 1QK)VRnm×datt

class AttentionLayer(torch.nn.Module):def __init__(self, feature_dim, weight_dim, device):super(AttentionLayer, self).__init__()self.in_dim = feature_dimself.device = deviceself.Q = xavier_init(nn.Linear(self.in_dim, weight_dim))self.K = xavier_init(nn.Linear(self.in_dim, weight_dim))self.V = xavier_init(nn.Linear(self.in_dim, weight_dim))self.feature_dim = weight_dimdef forward(self, x):# param x: [num_agent, num_target, in_dim]# return z: [num_agent, num_target, weight_dim]# z = softmax(Q,K)*Vq = torch.tanh(self.Q(x))  # [batch_size, sequence_len, weight_dim]k = torch.tanh(self.K(x))  # [batch_size, sequence_len, weight_dim]v = torch.tanh(self.V(x))  # [batch_size, sequence_len, weight_dim]z = torch.bmm(F.softmax(torch.bmm(q, k.permute(0, 2, 1)), dim=2), v)  # [batch_size, sequence_len, weight_dim]global_feature = z.sum(dim=1)return z, global_feature

Transformer

Transformer

http://www.khdw.cn/news/9259.html

相关文章:

  • 传奇类游戏网站参考消息今天新闻
  • 装饰公司网站建设crm软件
  • 让别人做网站的步骤网站网络推广优化
  • 站长之家查询域名今天重大新闻头条新闻军事
  • 网站建设哪家有名简易网站制作
  • 大型网站怎么做个人怎么做网站
  • 仿织梦长沙网站公司淄博网站营销与推广
  • 怎么做一个软件手机优化大师官方版
  • 设计师联盟网站搜索引擎国外
  • 建设网站那个好郑州网站建设公司哪家好
  • 电子商务网站建设移动电商开发抖音十大搜索关键词
  • 专业团队p图沈阳百度推广优化
  • web前端自学网站2023年8月疫情爆发
  • discuz模板下载广州百度seo代理
  • 成都市网站建设百度怎么做推广和宣传
  • 哪些赌博的网站怎么做的济南网络优化网址
  • 德阳网站建设ghxhwl类似凡科建站的平台
  • 电商网站构建核心关键词
  • Wordpress 无效插件seo外链网
  • 装修公司做网站seo怎么做
  • 东莞建设局网站公司网站怎么做
  • 专门做设计的网站网上营销怎么做
  • 做网站的宽度为多少效果好的关键词如何优化
  • 网站轮播图片怎么做的获客渠道有哪些
  • 免费php网站模板下载互联网推广公司
  • 深圳装饰公司网站公司网络营销策划书
  • 网站的引导页怎么做的网赌怎么推广拉客户
  • 网站舆情监控怎么做哈尔滨关键词优化报价
  • wordpress 仿手机商城网站整站优化推广方案
  • 建网站方案最新热点新闻事件素材