当前位置: 首页 > news >正文

高端网网站建设电子商务营销的概念

高端网网站建设,电子商务营销的概念,建设网站费用如何入账,中小企业网站建设 网络营销实验开始前先配置环境 以实验室2023安装的版本为例: 1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了) 下载并安装 Anaconda3-2022.10-Windows-x86_64.exe 自己选择安装路径,其他使用默认…

实验开始前先配置环境

以实验室2023安装的版本为例:

1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了
下载并安装 Anaconda3-2022.10-Windows-x86_64.exe

自己选择安装路径,其他使用默认选项。

(1)在“Advanced Installation Options”中,
勾选“Add Anaconda3 to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。

(2)勾选“Register Anaconda3 as my default Python 3.9”。

2、安装pycharm
下载并安装 pycharm-community-2022.2.4.exe 

3、打开cmd窗口,输入以下命令

conda create -n  DMEv  pip python=3.8

 记住DMEV所在的磁盘路径

# 如需删除环境,使用命令 conda remove -n DMEv    --all

 安装要用到的Python库:
activate   DMEv  

pip install numpy==1.20.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install matplotlib==3.3.4 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install opencv_python==4.4.0.40 --index-url https://mirrors.aliyun.com/pypi/simple/

pip install scipy==1.6.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scikit-learn==0.24.1 --index-url https://mirrors.aliyun.com/pypi/simple/ 

pip install h5py==2.10.0 --index-url https://mirrors.aliyun.com/pypi/simple/ 

pip install mnist==0.2.2 --index-url https://mirrors.aliyun.com/pypi/simple/ 


4、测试

在Pycharm中创建项目时,DMEV所在的路径下选择python.exe即可


在Pycharm中新建项目,配置 interpreter,运行以下代码:(没有报错,则导入成功
import cv2 as cv
import numpy as np
from sklearn.decomposition import PCA
import mnist
import matplotlib.pyplot as plt 

 

实验1 数据

一、实验目的

(1)练习和掌握python的基本使用。

(2)理解数据类型、数据质量、数据预处理、相似性和相异性度量的概念

(3)理解各种相似性和相异性度量(测度)及其含义,并且能编程计算。

二、实验内容

1编程实现任意给定两个相同维度的向量之间的欧氏距离计算函数dist_E(x,y)。

输入:两个任意k维向量x和y,其中k的值随由数据决定。如x=[3,20,3.5], y=[-3,34,7]。

import numpy as npdef dist_E(vect1, vect2):return np.sqrt(sum(np.power((vect1-vect2),2)))if __name__ == "__main__":x=np.array([3,20,3.5])y=np.array([-3,34,7])dist=dist_E(x,y)print(dist)

2编程实现任意给定两个相同维度的向量之间的夹角余弦相似度计算函数sim=sim_COS(x,y)。输入:两个任意k维向量x和y,其中k的值由数据决定。

import numpy as npdef sim_COS(x, y):num = x.dot(y.T)denom = np.linalg.norm(x) * np.linalg.norm(y)return num / denomif __name__ == "__main__":x=np.array([3, 2, 0, 5, 0, 0, 0, 2, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 2])sim=sim_COS(x,y)print(sim)

3编程实现任意给定两个相同维度的布尔向量之间的Jaccard系数计算函数dist1=dist_Jaccard(x,y)。

import numpy as npdef sim_Jaccard(vect1, vect2):sim=-1if(vect1.size!=vect2.size):print("length of input vectors must agree")else:ind1=np.logical_and(vect1==1,vect2==1)ind2=np.logical_or(vect1==1,vect2==1)x=vect1[ind1]y=vect2[ind2]n1=np.size(x)n2=np.size(y)sim=n1/n2return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_Jaccard(x,y)print(dist)

4编程实现任意给定两个相同维度的布尔向量之间的简单匹配系数计算函数dist1=dist_SMC(x,y)。

import numpy as npdef sim_SMC(vect1, vect2):sim = -1if (vect1.size != vect2.size):print("length of input vectors must agree")else:ind0 = np.logical_and(vect1 == 0, vect2 == 0)ind1 = np.logical_and(vect1 == 1, vect2 == 1)ind2 = np.logical_or(vect1 == 1, vect2 == 1)x = vect1[ind1]y = vect1[ind2]z=vect1[ind0]n1 = np.size(x)n2 = np.size(y)n3 = np.size(z)sim = (n1+n3) / (n2+n3)return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_SMC(x,y)print(dist)

http://www.khdw.cn/news/65736.html

相关文章:

  • 怎样为公司做网站个人网页
  • 深圳做商城网站建设网络营销的营销方式
  • 如何给网站做优化代码网络优化公司哪家好
  • 合肥网站建设高端汽油价格最新调整最新消息
  • 做宣传的网站有哪些电商怎么做营销推广
  • 邯郸邯山区网站建设南宁网络推广软件
  • 网站开发投入资金在哪里做推广效果好
  • 关于棋牌游戏网站建设文案长春seo主管
  • .net 网站 源代码整站排名
  • 限制访问次数的网站今天宣布疫情最新消息
  • 网站流量怎么赚钱东莞seo顾问
  • 免费企业网站数据统计网站
  • 杭州网站seo推广软件企业推广方式有哪些
  • wordpress伪静态301错误长尾词seo排名优化
  • 广州网站推广方案谈谈对seo的理解
  • 网站制作和app制作郴州网站建设网络推广渠道
  • 顺德做网站公司哪家好网站怎么优化到首页
  • 聊城手机网站建设软件推广app软件
  • 阳江网站建设推广steam交易链接在哪
  • 做国外直播网站360站长平台
  • 热门的网站模板广告推广公司
  • 深圳市建设监理协会网站如何提升网站搜索排名
  • jsp做网站都可以做什么百度seo关键词排名
  • 做跨境电商有没推荐的网站seo全网营销的方式
  • 使用免费的代码做网站今日国际新闻热点
  • qt做网站服务器新的seo网站优化排名 排名
  • 成都网站建设好的公司sem营销是什么意思
  • 南康网站建设南康seo自动发布外链工具
  • 网站怎样做友情链接怎么在百度上做广告
  • 建立电子商务网站专业北京seo公司