当前位置: 首页 > news >正文

中铁航空港建设集团网站网站建设公司

中铁航空港建设集团网站,网站建设公司,投资公司网站模板,如何在网站开发客户前言 \quad~~一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。 进入正题 根据随机效用理论,决策…

前言

\quad~~   一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。

进入正题

根据随机效用理论,决策者在面对 nnn 个备选方案做选择时,会根据自身的意愿感知哪一个备选方案对自身而言是最好的,从而作出自身选择。这里的最好用数量来进行衡量就可以说是效用最高的

比如从A点到B点共有 nnn 条路,我现在需要从A点到B点,从节约时间的角度来考虑的话,那么我肯定希望选择最快捷的一条路。即如果我能以最快的时间到达我的目的地的话,对我而言,我就得到了最高的出行效用。

通常呢,我们的感知能力是有限的,如果我们记选择任意一个方案 jjj 的效用为 UjU_jUj,那么 UjU_jUj 为一个随机变量,它可以分为两部分,一部分呢是我们可以以实际那数字量化出来的,我们称为系统效用。另一部分呢为我们无法测量出来的,或估测时的误差,为一个随机变量,我们称为感知误差项。因此这里的方案 jjj 的效用 UjU_jUj 就可以写为系统效用 VjV_jVj 与随机误差项 εj\varepsilon_jεj 的和,即:
Uj=Vj+εj.(1)U_j=V_j+\varepsilon_j.\tag{1}Uj=Vj+εj.(1)
在多项式Logit模型中,我们假设随机误差项 εj\varepsilon_jεj 服从零均值的Gumbel分布,其概率密度函数与累积分布函数分别为:
f(x)=1θexp(−xθ−Φ)exp[−exp(xθ−Φ)],(2)f(x)=\frac{1}{\theta}exp(-\frac{x}{\theta}-\Phi)exp[-exp(\frac{x}{\theta}-\Phi)],\tag{2}f(x)=θ1exp(θxΦ)exp[exp(θxΦ)],(2)F(x)=Pr(εj≤x)=exp[−exp(xθ−Φ)],(3)F(x)=Pr(\varepsilon_j\leq x)=exp[-exp(\frac{x}{\theta}-\Phi)],\tag{3}F(x)=Pr(εjx)=exp[exp(θxΦ)],(3)这里的参数 Φ\PhiΦ 为欧拉常数,Φ≈0.577\Phi\approx0.577Φ0.577
从而可以得出决策者选择备选方案 jjj 的概率为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj/θ)∑kexp(Vk/θ).(4)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j/\theta)}{\sum_k exp(V_k/\theta)}.\tag{4}pj=Pr(Uj>Uk,k=j)=kexp(Vk/θ)exp(Vj/θ).(4)

而通常在路径选择情形中我们以出行阻抗作为我们的出行负效用(因为我们出行就会花费时间,金钱等,这都属于是对我们自身资源的一种消耗),负效用越小的路径被选择的可能性就会越大。这里呢,同样因为人们的感知,计算等能力有限,我们所判定的出行负效用也为一个随机变量,为可直接估量的系统效用与随机误差项的和。同样以路径 jjj 为例,其感知出行负效用为 CjC_jCj, 可进行估测的系统效用为 cjc_jcj,随机误差项为 ξj\xi_jξj, 则 CjC_jCj 就可写为:
Cj=cj+ξj,(5)C_j=c_j+\xi_j,\tag{5}Cj=cj+ξj,(5)那么选择路径 jjj 的效用就可以写为:Uj=−Cj,(6)U_j=-C_j,\tag{6}Uj=Cj,(6)那么我们使用概率密度函数公式 (2) 计算得出的选择路径 jjj 的概率为:
pj=Pr(Uj>Uk,∀k≠j)=exp(−cj/θ)∑kexp(−ck/θ).(7)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-c_j/\theta)}{\sum_k exp(-c_k/\theta)}.\tag{7}pj=Pr(Uj>Uk,k=j)=kexp(ck/θ)exp(cj/θ).(7)但通常呢,路径选择概率会写为如下形式:
pj=Pr(Uj>Uk,∀k≠j)=exp(−θcj)∑kexp(−θck).(8)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-\theta c_j)}{\sum_k exp(-\theta c_k)}.\tag{8}pj=Pr(Uj>Uk,k=j)=kexp(θck)exp(θcj).(8)所以公式 (7) 和 (8) 同样是路径选择概率公式为什么不一样呢?

解决问题

观察概率密度函数,即公式 (2), 如果令 y=−xθy=-\frac{x}{\theta}y=θx, 那么就有f(−θy)=1θexp(y−Φ)exp[−exp(y−Φ)],(9)f(-\theta y)=\frac{1}{\theta}exp(y-\Phi)exp[-exp(y-\Phi)],\tag{9}f(θy)=θ1exp(yΦ)exp[exp(yΦ)],(9)那么θf(−θy)=exp(y−Φ)exp[−exp(y−Φ)],(10)\theta f(-\theta y)=exp(y-\Phi)exp[-exp(y-\Phi)],\tag{10}θf(θy)=exp(yΦ)exp[exp(yΦ)],(10)对应的累积分布函数为θF(−θy)=exp[−exp(y−Φ)],(11)\theta F(-\theta y)=exp[-exp(y-\Phi)],\tag{11}θF(θy)=exp[exp(yΦ)],(11)看着公式 (10) 和公式 (11) 是不是相对于(2),(3) 来说更简洁呢?公式 (10) 和公式 (11) 变成了零均值的标准Gumbel分布。所以如果公式(2)为随机变量 εj\varepsilon_jεj 的概率密度函数,从简化的角度来看,我们是不是可以让随机变量 ξj=−εj/θ\xi_j =- \varepsilon_j/\thetaξj=εj/θ,即εj=−θξj\varepsilon_j= -\theta \xi_jεj=θξj,那么为了统一公式 (6),我们可以令 Vj=−θcjV_j = -\theta c_jVj=θcj,那么 εj\varepsilon_jεj 经过处理后的概率密度函数就可以表示为公式 (10) 和公式 (11),即选择路径 jjj 的概率就表示为pj=∫−∞+∞exp[−exp(εj+Vj−Vk−Φ)]∗exp(εj−Φ)exp[−exp(εj−Φ)]dεj,(12)p_j=\int_{-\infty}^{+\infty}exp[-exp(\varepsilon_j+V_j-V_k-\Phi)]* \\ exp(\varepsilon_j-\Phi)exp[-exp(\varepsilon_j-\Phi)]d\varepsilon_j, \tag{12}pj=+exp[exp(εj+VjVkΦ)]exp(εjΦ)exp[exp(εjΦ)]dεj,(12)
整理可得概率公式为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj)∑kexp(Vk),(13)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j)}{\sum_k exp(V_k)},\tag{13}pj=Pr(Uj>Uk,k=j)=kexp(Vk)exp(Vj),(13)Vj=−θcjV_j = -\theta c_jVj=θcj代入公式 (13),即得到公式 (8)。

http://www.khdw.cn/news/64505.html

相关文章:

  • 许昌做网站公司seo资讯推推蛙
  • 用php做购物网站视频谷歌seo排名工具
  • 安徽政府网站建设北京互联网公司
  • 曲靖手机网站建设百度联盟官网登录入口
  • 网站空间租用和自己搭建服务器谷歌搜索引擎为什么国内用不了
  • 做培训网站超级seo外链工具
  • 网站的建设及维护sem推广优化
  • 网站搭建怎么收费智能识别图片
  • 网上做平面设计的网站自媒体营销的策略和方法
  • 做电商需要哪些网站竞价网络推广培训
  • 靖江做网站的优化营商环境发言材料
  • 怎么做提卡网站百度云app下载安装
  • 寓意八方来财的公司名字河北网站seo地址
  • wordpress对接小程序关键词优化需要从哪些方面开展?
  • nodejs做静态网站广告关键词查询
  • 来个网站吧好人一生平安百度贴吧安装百度到桌面
  • vs2015做的网站南京怎样优化关键词排名
  • 制作网页案例贵州seo学校
  • 安装网络要多少钱aso榜单优化
  • 自己如何做网站优化企业软文营销发布平台
  • 公司注册查询入口官网网址西安优化外包
  • 东莞做网站公司排名谷歌广告联盟一个月能赚多少
  • 网红营销的价值北京seo公司排名
  • 旅游网站建设规划书模块划分员工培训课程
  • 天猫商城网上购物seo外包推广
  • 重庆城市建设集团官方网站交换友情链接推广法
  • 做web网站如何做选择日历外包seo公司
  • 上外网看新闻去哪个网站查询网站相关网址
  • 如何在分类信息网站做推广深圳网站关键词排名优化
  • 广东智能网站建设质量保障百度seo在线优化