当前位置: 首页 > news >正文

织梦模板网站好优化吗百度商品推广平台

织梦模板网站好优化吗,百度商品推广平台,建设英文网站多少钱,wordpress导航分类目录 1.1 卷积神经网络基础 3.1 AlexNet网络结构详解与花分类数据集下载 4.1 VGG网络详解及感受野的计算 5.1 GoogLeNet网络详解 6.1 ResNet网络结构,BN以及迁移学习详解 总结(可以直接看总结) 1.1 卷积神经网络基础 视频讲解&#xf…

目录

1.1 卷积神经网络基础

3.1 AlexNet网络结构详解与花分类数据集下载

4.1 VGG网络详解及感受野的计算

5.1 GoogLeNet网络详解

6.1 ResNet网络结构,BN以及迁移学习详解

总结(可以直接看总结)


1.1 卷积神经网络基础

视频讲解:
1.1 卷积神经网络基础_哔哩哔哩_bilibili

发展不是一帆风顺的

全连接层:

卷积层()

目的:进行图像特征提取

特性:拥有局部感知机制,权值共享

扩展到多维

 特征总结:

  1. 卷积核的channel与输入特征层的channek相同
  2. 输出的特征矩阵channel与卷积核个数相同

sigmoid/Relu  两个激活函数  各有缺点:

Sigmoid:饱和时梯度值小,网络层数较深时易出现梯度消失
Relu:反向传播时出现非常大的梯度更新后导致权重分布中心小于零,导致该处导数始终为零,反向传播无法更新权重,即进入失活状态。

出现越界情况用padding处理(增补)

池化层()

和卷积层类似 但是要更简单

目的:对特征图像进行稀疏处理,减少数据运算量

(补充)反向传播(后面跳过了)

说明:本节理论较多,会枯燥,尽管内容不需要完全掌握,但是要大致理解,留有印象

误差的计算:

softmax:让结果满足概率分布(即概率和为1)  (猫/狗)

sigmoid:(人类/男人)

误差的反向传播:

3.1 AlexNet网络结构详解与花分类数据集下载

视频讲解:
3.1 AlexNet网络结构详解与花分类数据集下载_哔哩哔哩_bilibili

AlexNet(2012冠军)

该网络的亮点在于:

  • (1)首次利用 GPU进行网络加速训练。
  • (2)使用了 ReLu 激活函数,而不是传统的 sigmoid 激活函数以及 Tanh 激活函数。
  • (3)使用了 LRN 局部响应归一化。
  • (4)在全连接层的前两层中使用了 Dropout随机失活神经元操作,以减少过拟合。

中间的图像很好的诠释了AlexNet的好处,减少了过拟合的现象

解决方法:使用Dropout的方式在网络正传播过程中随机失活一部分神经元

经卷积后的矩阵尺寸大小计算公式为:N=(W-F+2P)/S+1
输入图片大小 W*W
Filter大小F*F
步长 S
padding的像素数P

4.1 VGG网络详解及感受野的计算

视频讲解:
4.1 VGG网络详解及感受野的计算_哔哩哔哩_bilibili

网络结构:

网络亮点: 

  • 通过堆叠多个3*3的卷积核来替代大尺度卷积核(减少所需参数 )
  • 通过堆善两个3x3的卷积核替代5x5的卷积核
  • 通过堆叠三个3x3的卷积核替代7x7的卷积核。

为什么这么干?
效果相同的情况下,参数更少。

5.1 GoogLeNet网络详解

网络结构:

网络中的亮点:

  • 引入了Inception结构(融合不同尺度的特征信息)
  • 使用1x1的卷积核进行降维以及映射处理    减少参数/特征矩阵深度
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大减少模型参数)

注意:AlexNet和VGG都只有一个输出层,GooLeNet有三个输出层

6.1 ResNet网络结构,BN以及迁移学习详解

视频讲解:
6.1 ResNet网络结构,BN以及迁移学习详解_哔哩哔哩_bilibili

网络结构:

网络中的亮点:

  • 超深的网络结构(突破1000层)
  • 提出residual模块  
  • 使用Batch Normalization加速训练(丟奔dropout)

随着网络加深,梯度消失&&梯度爆炸现象越来越明显     BN等方式解决

Batch Normalization原理:
要让整个训练样本的数据集满足分布规律(均值为0方差为1)
退化问题,通过残差解决

迁移学习:
常见的迁移学习方式:

  • 1.载入权重后训练所有参数
  • 2.载入权重后只训练最后几层参数
  • 3.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

总结(可以直接看总结):

综上呢,其实就是延续上一篇文章(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)-CSDN博客

五种”神经网络模型“的进一步讲解,偏向于理论层面

但两篇文章整理的是不同博主的讲解视频,讲的都蛮好的,通过”对比学习“可以发现,二者间会有一部分共通之处——这些共同之处一定是基础/重点,当然我已经帮大家整理好了,请各位放心食用。

http://www.khdw.cn/news/64404.html

相关文章:

  • 怎么做网站教程html文本文档手机百度app安装下载
  • 玉林市建设委员会网站推广运营平台
  • 建网站用什么服务器好网站设计制作
  • 鹤峰网站建设上海整站seo
  • 北京 政府网站建设公司免费的网站推广在线推广
  • wordpress注入docker网站seo优化培训
  • ui设计比较成功的网站页面网站你应该明白我的意思吗
  • 没有做防注入的网站竞价账户托管
  • 浦东做网站网店运营实训报告
  • 如何自己建设一个网站免费网络营销推广软件
  • 网站建设与维护的选择题电商卖货平台有哪些
  • 自如网站做的好 服务珠海做网站的公司
  • 广东专业网站建设报价搜狗网站收录
  • 纪检网站建设网络优化工程师招聘信息
  • 扁平化高端网站模板网上如何推广自己的产品
  • 餐馆网站怎么做的百度推广一级代理商名单
  • wordpress精美免费主题搜索引擎优化介绍
  • 学做粤菜的网站网络整合营销的特点有
  • 做视频网站用什么开发企业营销策划包括哪些内容
  • 环保行业网站开发快速排名程序
  • 公司的网站建设费用怎么入账百度平台商家app下载
  • 浅谈网站建设的目的和意义企业网站建设原则是
  • java和php做网站徐州网站建设方案优化
  • 自己做网站服务器的备案方法seo投放
  • 自己做网站怎么跳过备案企业营销案例
  • 龙岗微网站建设热词搜索排行榜
  • 做设备租赁的网站百度网页版进入
  • 做网站如何处理并发问题线上广告平台
  • 环球易购招聘网站建设今日足球比赛分析推荐
  • led网站建设方案模板外贸平台排名