当前位置: 首页 > news >正文

安康那个公司做网站好免费发广告的平台

安康那个公司做网站好,免费发广告的平台,泰山区最新通告,网站平台建设方案参考链接:hive sql面试题及答案 - 知乎 有哪些好的题目都可以给我哦 我来汇总到一起 1、编写sql实现每个用户截止到每月为止的最大单月访问次数和累计到该月的总访问次数 数据: userid,month,visits A,2015-01,5 A,2015-01,15 B,2015-01,5 A,2015-01,…

参考链接:hive sql面试题及答案 - 知乎

有哪些好的题目都可以给我哦 我来汇总到一起

1、编写sql实现每个用户截止到每月为止的最大单月访问次数和累计到该月的总访问次数

数据:
userid,month,visits
A,2015-01,5
A,2015-01,15
B,2015-01,5
A,2015-01,8
B,2015-01,25
A,2015-01,5
A,2015-02,4
A,2015-02,6
B,2015-02,10
B,2015-02,5
A,2015-03,16
A,2015-03,22
B,2015-03,23
B,2015-03,10
B,2015-03,1

预期结果:

create table u_visit(
userid STRING  ,month STRING ,visits BIGINT 
) LIFECYCLE 1;
INSERT into u_visit values('A','2015-01',5)
,('A','2015-01',15)
,('B','2015-01',5)
,('A','2015-01',8)
,('B','2015-01',25)
,('A','2015-01',5)
,('A','2015-02',4)
,('A','2015-02',6)
,('B','2015-02',10)
,('B','2015-02',5)
,('A','2015-03',16)
,('A','2015-03',22)
,('B','2015-03',23)
,('B','2015-03',10)
,('B','2015-03',1);思路:
截至当前累计 over中加order by 时间
全累计    over中不加order by 时间SELECT  userid,MONTH,visits,max(visits) OVER(PARTITION BY userid ) AS max_visit,max(visits) OVER(PARTITION BY userid ORDER BY MONTH ASC ) AS max_visit    --截止到当月最大值,SUM(visits) OVER(PARTITION BY userid ORDER BY MONTH ASC ) AS sum_visit
FROM    (SELECT  userid,MONTH,sum(visits) visitsFROM    u_visitGROUP BY userid,MONTH) A
;

结果

用户id 月份 月访问数 截止目前最大访问数 截止当前月最大访问数 截止当前月总访问数 

userid    month    visits    max_visit    max_visit2    sum_visit
A    2015-01    33    38    33    33
A    2015-02    10    38    33    43
A    2015-03    38    38    38    81
B    2015-01    30    34    30    30
B    2015-02    15    34    30    45
B    2015-03    34    34    34    79
 

2、求出每个栏目的被观看次数及累计观看时长

数据:
vedio表

用户id 栏目id 时长
Uid channl min
1 1 23
2 1 12
3 1 12
4 1 32
5 1 342
6 2 13
7 2 34
8 2 13
9 2 134

这个好简单 pass

3、编写连续7天登录的总人数

数据:
t1表
Uid dt login_status(1登录成功,0异常)
1 2019-07-11 1
1 2019-07-12 1
1 2019-07-13 1
1 2019-07-14 1
1 2019-07-15 1
1 2019-07-16 1
1 2019-07-17 1
1 2019-07-18 1
2 2019-07-11 1
2 2019-07-12 1
2 2019-07-13 0
2 2019-07-14 1
2 2019-07-15 1
2 2019-07-16 0
2 2019-07-17 1
2 2019-07-18 0
3 2019-07-11 1
3 2019-07-12 1
3 2019-07-13 1
3 2019-07-14 1
3 2019-07-15 1
3 2019-07-16 1
3 2019-07-17 1
3 2019-07-18 1

create TABLE t1(Uid bigint,dt STRING , login_status BIGINT  COMMENT '(1登录成功,0异常)'
) LIFECYCLE 1;
INSERT INTO t1 VALUES (1, '2019-07-11', 1)
,(1, '2019-07-12', 1)
,(1, '2019-07-13', 1)
,(1, '2019-07-14', 1)
,(1, '2019-07-15', 1)
,(1, '2019-07-16', 1)
,(1, '2019-07-17', 1)
,(1, '2019-07-18', 1)
,(2, '2019-07-11', 1)
,(2, '2019-07-12', 1)
,(2, '2019-07-13', 0)
,(2, '2019-07-14', 1)
,(2, '2019-07-15', 1)
,(2, '2019-07-16', 0)
,(2, '2019-07-17', 1)
,(2, '2019-07-18', 0)
,(3, '2019-07-11', 1)
,(3, '2019-07-12', 1)
,(3, '2019-07-13', 1)
,(3, '2019-07-14', 1)
,(3, '2019-07-15', 1)
,(3, '2019-07-16', 1)
,(3, '2019-07-17', 1)
,(3, '2019-07-18', 1);
--思路1 
-- 1、先按照每个人登录时间排序成如下数据结构
--   1 07-01 1
--   1 07-02 2
--   1 07-03 3
--2、 时间与排序做date_sub,变成如下结果
--   1 07-01 1 06-30
--   1 07-02 2 06-30
--   1 07-03 3 06-30
-- 3、根据id聚合时间差,变成如下结果:
--1 06-30 3 07-01 07-03  证明用户1 连续登录了3天 起始登录时间是07-01 结束连续登录是07-03
SELECT  Uid,COUNT(dtadd) AS countadd,COUNT(dtsub) AS countsub,MIN(dt) mindt,MAX(dt) maxdt
FROM    (SELECT  Uid,dt,DATEADD(dt,-rk,'dd') dtadd,date_sub(dt,rk) dtsubFROM    (SELECT  Uid,to_date(dt,'yyyy-mm-dd') dt,ROW_NUMBER() OVER(PARTITION BY uid ORDER BY dt ASC ) AS rkFROM    t1WHERE   login_status = 1) A) B
GROUP BY uid
HAVING  COUNT(dtadd) >= 7
;

结果:

uid    countadd    countsub    mindt    maxdt
1    8    8    2019-07-11 00:00:00    2019-07-18 00:00:00
3    8    8    2019-07-11 00:00:00    2019-07-18 00:00:00 

-- 思路2:
-- 1、先按照每个人登录时间排序成如下数据结构
--   1 07-01 1
--   1 07-02 2
--   1 07-03 3
--2、 利用lead或lag函数 上下错位,并计算时间差
--   1 07-01 07-02  1
--   1 07-02 07-03  1 
--   1 07-03 null   
-- 3、根据id聚合时间差,变成如下结果:
--1 2(因为有null,得再加个1)  证明用户1 连续登录了3天 
SELECT 
uid 
,COUNT(dtdiff)+1 AS 登录总次数
FROM 
(SELECT  Uid,dt,LEAD(dt,1) OVER (PARTITION BY uid ORDER BY dt ASC) leadrk,DATEDIFF(dt,LEAD(dt,1) OVER (PARTITION BY uid ORDER BY dt ASC),'dd') dtdiff
FROM    (SELECT  Uid,to_date(dt,'yyyy-mm-dd') dt,ROW_NUMBER() OVER(PARTITION BY uid ORDER BY dt ASC ) AS rkFROM    t1WHERE   login_status = 1) A
) B 
where (dtdiff=-1 or dtdiff is null)
group by uid 
HAVING COUNT(dtdiff)+1>=7
;

结果:

uid    登录总次数
1    8
3    8
 

4、编写sql语句实现每班前三名,分数一样并列,同时求出前三名按名次排序的依次的分差:

数据:
stu表
Stu_no class score
1 1901 90
2 1901 90
3 1901 83
4 1901 60
5 1902 66
6 1902 23
7 1902 99
8 1902 67
9 1902 87

create table stu(Stu_no BIGINT , class BIGINT , score BIGINT 
) LIFECYCLE 1;
INSERT INTO stu VALUES 
(1 ,1901, 90)
,(2 ,1901, 90)
,(3 ,1901, 83)
,(4 ,1901, 60)
,(5 ,1902, 66)
,(6 ,1902, 23)
,(7 ,1902, 99)
,(8 ,1902, 67)
,(9 ,1902, 87);

-- 思路1
-- 1、各班自行排序,可并列 应使用 dense_rank 区别rankrk
-- 2、利用lag或lead函数,上下错误,并计算分差
SELECT  stu_no,class,score,LEAD(score,1) OVER (PARTITION BY class ORDER BY score DESC ) leadscore,LAG(score,1) OVER (PARTITION BY class ORDER BY score DESC ) lagscore,score-nvl(LEAD(score,1) OVER (PARTITION BY class ORDER BY score DESC ),0) AS 分差lead,LAG(score,1) OVER (PARTITION BY class ORDER BY score DESC )-score AS 分差lag
FROM    (SELECT  stu_no,class,score,DENSE_RANK() OVER (PARTITION BY class ORDER BY score DESC ) denserk,RANK() OVER (PARTITION BY class ORDER BY score DESC ) rankrkFROM    stu) A
WHERE   denserk <= 3
;

第一步结果:

stu_no    class    score    denserk    rankrk
1    1901    90    1    1
2    1901    90    1    1
3    1901    83    2    3
4    1901    60    3    4
7    1902    99    1    1
9    1902    87    2    2
8    1902    67    3    3
5    1902    66    4    4
6    1902    23    5    5
 

结果 [具体向上取分差还是向下取分差按实际情况即可]:

stu_no    class    score    leadscore    lagscore    分差lead    分差lag
1    1901    90    90    \N    0    \N
2    1901    90    83    90    7    0
3    1901    83    60    90    23    7
4    1901    60    \N    83    60    23
7    1902    99    87    \N    12    \N
9    1902    87    67    99    20    12
8    1902    67    \N    87    67    20
 

5、每个店铺的当月销售额和累计到当月的总销售额

数据:
店铺,月份,金额
a,01,150
a,01,200
b,01,1000
b,01,800
c,01,250
c,01,220
b,01,6000
a,02,2000
a,02,3000
b,02,1000
b,02,1500
c,02,350
c,02,280
a,03,350
a,03,250

参考1思路

6、分析用户的行为习惯,找到每个用户的第一次行为

数据:user_action_log

uid time action

1 time1 Read

3 time2 Comment

1 time3 Share

2 time4 Like

1 time5 Write

2 time6 Share

3 time7 Write

2 time8 Read

思路,

1、排序取第一个

2、first_value函数

7、订单及订单类型行列互换

t_order表:
order_id order_type order_time
111 N 10:00
111 A 10:05
111 B 10:10
是用hql获取结果如下:
order_id order_type_1 order_type_2 order_time_1 order_time_2
111 N A 10:00 10:05
111 A B 10:05 10:10

create table t_order
(order_id BIGINT , order_type STRING , order_time STRING )
LIFECYCLE 1;INSERT INTO t_order VALUES 
(111, 'N', '10:00')
,(111, 'A', '10:05')
,(111, 'B', '10:10');--思路
-- 1、按照时间升序排列数据
-- 2、利用lead函数取下一个数据,取不到的排除掉
SELECT  *
FROM    (SELECT  order_id,order_type AS order_type_1,LEAD(order_type,1) OVER (PARTITION BY order_id ORDER BY order_time ASC ) AS order_type_2,order_time AS order_time_1,LEAD(order_time,1) OVER (PARTITION BY order_id ORDER BY order_time ASC ) AS order_time_2FROM    (SELECT  order_id,order_type,order_time,ROW_NUMBER() OVER (PARTITION BY order_id ORDER BY order_time ASC ) rkFROM    t_order) A) 
WHERE   order_type_2 IS NOT NULL
;

结果:

order_id    order_type_1    order_type_2    order_time_1    order_time_2
111    N    A    10:00    10:05
111    A    B    10:05    10:10
 

8、某APP每天访问数据存放在表access_log里面,包含日期字段 ds,用户类型字段user_type,用户账号user_id,用户访问时间 log_time,请使用hive的hql语句实现如下需求:

(1)、每天整体的访问UV、PV?
(2)、每天每个类型的访问UV、PV?
(3)、每天每个类型中最早访问时间和最晚访问时间?
(4)、每天每个类型中访问次数最高的10个用户?

(1)思路

UV = count(user_id)

PV = sum(user_id)

select
count(user_id) over(distribute by user_id) uv,
sum(user_id) over(distribute by log_time) pv
from access_log

(2)思路

select
count(user_id) uv
sum(user_id) over(distribute by log_time) pv
from access_log al1
inner join
access_log al2
group by
user_type

(3)思路
select
first_value(log_time) over(distribute by user_type order by log_time) first_time,
last_value(log_time) over(distribute by user_type order by log_time)
from access_log

(4)思路
select
user_id
from
(select
count(user_id) cnt
row_number() over(distribute by user_type order by count(user_id)) rows
from access_log) tmp
where tmp.rows<=10

 

9、每个用户连续登陆的最大天数?

数据:
login表
uid,date
1,2019-08-01
1,2019-08-02
1,2019-08-03
2,2019-08-01
2,2019-08-02
3,2019-08-01
3,2019-08-03
4,2019-07-28
4,2019-07-29
4,2019-08-01
4,2019-08-02
4,2019-08-03
结果如下:
uid cnt_days
1 3
2 2
3 1
4 3

10、使用hive的hql实现男女各自第一名及其它

id sex chinese_s math_s
0 0 70 50
1 0 90 70
2 1 80 90
1、男女各自语文第一名(0:男,1:女)
2、男生成绩语文大于80,女生数学成绩大于70

11、使用hive的hql实现最大连续访问天数

log_time uid
2018-10-01 18:00:00,123
2018-10-02 18:00:00,123
2018-10-02 19:00:00,456
2018-10-04 18:00:00,123
2018-10-04 18:00:00,456
2018-10-05 18:00:00,123
2018-10-06 18:00:00,123 

12、编写sql实现行列互换

行转列:

1、使用case when 查询出多列即可,即可增加列。

列转行:

1、lateral view explode(),使用炸裂函数可以将1列转成多行,被转换列适用于array、map等类型。 lateral view posexplode(数组),如有排序需求,则需要索引。将数组炸开成两行(索引 , 值),需要 as 两个别名。

2、case when 结合concat_ws与collect_set/collect_list实现。内层用case when,外层用 collect_set/list收集,对搜集完后用concat_ws分割连接形成列。

13、编写sql实现如下:

数据:
t1表
uid tags
1 1,2,3
2 2,3
3 1,2
编写sql实现如下结果:
uid tag
1 1
1 2
1 3
2 2
2 3
3 1
3 2

14、用户标签连接查询

数据:
T1表:
Tags
1,2,3
1,2
2,3
T2表:
Id lab
1 A
2 B
3 C
根据T1和T2表的数据,编写sql实现如下结果:
ids tags
1,2,3 A,B,C
1,2 A,B
2,3 B,C

预期结果:

15、用户标签组合 

数据:
t1表:
id tag flag
a b 2
a b 1
a b 3
c d 6
c d 8
c d 8
编写sql实现如下结果:
id tag flag
a b 1|2|3
c d 6|8

预期结果:

16、户标签行列互换

数据:
t1表
uid name tags
1 goudan chihuo,huaci
2 mazi sleep
3 laotie paly
编写sql实现如下结果:
uid name tag
1 goudan chihuo
1 goudan huaci
2 mazi sleep
3 laotie paly

17、hive实现词频统计

数据:
t1表:
uid contents
1 i|love|china
2 china|is|good|i|i|like
统计结果如下,如果出现次数一样,则按照content名称排序:
content cnt
i 3
china 2
good 1
like 1
love 1
is 1

18、课程行转列

数据:
t1表
id course
1,a
1,b
1,c
1,e
2,a
2,c
2,d
2,f
3,a
3,b
3,c
3,e
根据编写sql,得到结果如下(表中的1表示选修,表中的0表示未选修):
id a b c d e f
1 1 1 1 0 1 0
2 1 0 1 1 0 1
3 1 1 1 0 1 0

19、兴趣行转列

t1表
name    sex  hobby
janson  男 打乒乓球、游泳、看电影
tom      男 打乒乓球、看电影

hobby最多3个值,使用hql实现结果如下:
name   sex    hobby1    hobby2    hobby3
janson  男     打乒乓球   游泳       看电影
tom      男     打乒乓球  看电影

20、用户商品行列互换

t1表:
用户 商品
A P1
B P1
A P2
B P3
请你使用hql变成如下结果:1代表购买过的商品0代表未购买
用户 P1 P2 P3
A 1 1 0
B 1 0 1

21、求top3英雄及其pick率

id names
1 亚索,挖掘机,艾瑞莉娅,洛,卡莎
2 亚索,盖伦,奥巴马,牛头,皇子
3 亚索,盖伦,艾瑞莉娅,宝石,琴女
4 亚素,盖伦,赵信,老鼠,锤石
请用 HiveSQL 计算出出场次数最多的 top3 英雄及其 pick 率(=出现场数/总场数)

21、使用hive求出两个数据集的差集

数据
t1表:
id name
1 zs
2 ls
t2表:
id name
1 zs
3 ww
结果如下:
id name
2 ls
3 ww

22、两个表A 和B ,均有key 和value 两个字段,写一个SQL语句, 将B表中的value值置成A表中相同key值对应的value值

A:
key vlaue
k1 123
k2 234
k3 235
B:
key value
k1 111
k2 222
k5 246
使用hive的hql实现,结果是B表数据如下:
k1 123
k2 234
k5 246

 23、有用户表user(uid,name)以及黑名单表Banuser(uid)

1、用left join方式写sql查出所有不在黑名单的用户信息
2、用not exists方式写sql查出所有不在黑名单的用户信息

24、使用什么来做的cube 

使用with cube 、 with rollup 或者grouping sets来实现cube。

详细解释如下:

0、hive一般分为基本聚合和高级聚合

基本聚合就是常见的group by,高级聚合就是grouping set、cube、rollup等。

一般group by与hive内置的聚合函数max、min、count、sum、avg等搭配使用。

1、grouping sets可以实现对同一个数据集的多重group by操作。

事实上grouping sets是多个group by进行union all操作的结合,它仅使用一个stage完成这些操作。

grouping sets的子句中如果包换() 数据集,则表示整体聚合。多用于指定的组合查询。

2、cube俗称是数据立方,它可以时限hive任意维度的组合查询。

即使用with cube语句时,可对group by后的维度做任意组合查询

如:group a,b,c with cube ,则它首先group a,b,c 然后依次group by a,c 、 group by b,c、group by a,b 、group a 、group b、group by c、group by () 等这8种组合查询,所以一般cube个数=2^3个。2是定 值,3是维度的个数。多用于无级联关系的任意组合查询。

3、rollup是卷起的意思,俗称层级聚合,相对于grouping sets能指定多少种聚合,而with rollup则表示从左 往右的逐级递减聚合,如:group by a,b,c with rollup 等价于 group by a, b, c grouping sets( (a, b, c), (a, b), (a), ( )).直到逐级递减为()为止,多适用于有级联关系的组合查询,如国家、省、市级联组合查 询。

4、Grouping__ID在hive2.3.0版本被修复过,修复后的发型版本和之前的不一样。对于每一列,如果这列 被聚合 过则返回0,否则返回1。应用场景暂时很难想到用于哪儿。

5、grouping sets/cube/rollup三者的区别: 注: grouping sets是指定具体的组合来查询。 with cube 是group by后列的所有的维度的任意组合查询。

with rollup 是group by后列的从左往右逐级递减的层级组合查询。 cube/rollup 后不能加()来选择列,hive是要求这样。

25、访问日志正则提取

表t1(注:数据时正常的访问日志数据,分隔符全是空格)
8.35.201.160 - - [16/May/2018:17:38:21 +0800] "GET
/uc_server/data/avatar/000/01/54/22_avatar_middle.jpg HTTP/1.1" 200 5396
使用hive的hql实现结果如下:
ip dt url
8.35.201.160 2018-5-16 17:38:21
/uc_server/data/avatar/000/01/54/22_avatar_middle.jpg

 26、

http://www.khdw.cn/news/62730.html

相关文章:

  • 欧米伽男士手表官方网站长沙专业seo优化推荐
  • phpcms 怎么做网站成都网站seo费用
  • 新疆维吾尔自治区交通建设管理局网站成人培训班有哪些课程
  • 网站建设需要什么人才免费制作链接
  • 网页简单模板下载免费发布网站seo外链
  • 请人做网站要多手机清理优化软件排名
  • 手机做任务赚钱的网站免费b站推广网站有哪些
  • 成品网站免费网站下载2022拉人头最暴利的app
  • 河北网站建设及推广今日热榜
  • 微友说是做网站维护让帮忙投注网络营销题库案例题
  • 做诈骗网站交换链接营销的经典案例
  • 国际学院网站建设的意义万能软文模板
  • 做图片网站 侵权专业软文
  • wordpress网站更换空间网络营销工具
  • 上海网站制作策划个人微信管理系统
  • wordpress删除底部网站优化入门
  • 江苏专业网站建设公司电话网站优化排名易下拉稳定
  • 做本地化的返利网站怎么样大兴今日头条新闻
  • 做网站的开源代码百度app客服人工在线咨询
  • 专业高端网站建设杭州seo博客有哪些
  • 公司做网站怎么做谷歌浏览器中文手机版
  • 徐州做网站的公司有几家武汉全网推广
  • 广州低价网站建设淘宝权重查询入口
  • 平面设计欣赏网站推荐网站怎么制作免费的
  • 重生主角做视频网站的小说磁力狗在线引擎
  • 网站建设报价兴田德润在哪里网络舆情管控
  • 交友网站怎样做坚持
  • 巴中城乡建设局网站北京网站优化校学费
  • erp开发常德seo招聘
  • 哪些网站的做的好看的图片网站开发建设步骤