当前位置: 首页 > news >正文

安福相册网站怎么做的怎么建立信息网站平台

安福相册网站怎么做的,怎么建立信息网站平台,上海专业的网站建设公司排名,21年没封直接可以进的本地部署文生图模型 Flux 0. 引言1. 本地部署1-1. 创建虚拟环境1-2. 安装依赖模块1-3. 创建 Web UI1-4. 启动 Web UI1-5. 访问 Web UI 0. 引言 2024年8月1日,blackforestlabs.ai发布了 FLUX.1 模型套件。 FLUX.1 文本到图像模型套件,该套件定义了文本到…

本地部署文生图模型 Flux

  • 0. 引言
  • 1. 本地部署
    • 1-1. 创建虚拟环境
    • 1-2. 安装依赖模块
    • 1-3. 创建 Web UI
    • 1-4. 启动 Web UI
    • 1-5. 访问 Web UI

在这里插入图片描述

0. 引言

2024年8月1日,blackforestlabs.ai发布了 FLUX.1 模型套件。

FLUX.1 文本到图像模型套件,该套件定义了文本到图像合成的图像细节、提示依从性、样式多样性和场景复杂性的新技术。

为了在可访问性和模型功能之间取得平衡,FLUX.1 有三种变体:FLUX.1 [pro]、FLUX.1 [dev] 和 FLUX.1 [schnell]:

  • FLUX.1 [pro]:FLUX.1 的佼佼者,提供最先进的性能图像生成,具有顶级的提示跟随、视觉质量、图像细节和输出多样性。在此处通过我们的 API 注册 FLUX.1 [pro] 访问权限。FLUX.1 [pro] 也可通过 Replicate 和 fal.ai 获得。
  • FLUX.1 [dev]:FLUX.1 [dev] 是一个用于非商业应用的开放权重、指导蒸馏模型。FLUX.1 [dev] 直接从 FLUX.1 [pro] 蒸馏而来,获得了相似的质量和快速粘附能力,同时比相同尺寸的标准模型效率更高。FLUX.1 [dev] 权重在 HuggingFace 上可用,可以直接在 Replicate 或 Fal.ai 上试用。
  • FLUX.1 [schnell]:我们最快的模型是为本地开发和个人使用量身定制的。FLUX.1 [schnell] 在 Apache2.0 许可下公开可用。类似,FLUX.1 [dev],权重在Hugging Face上可用,推理代码可以在GitHub和HuggingFace的Diffusers中找到。

1. 本地部署

1-1. 创建虚拟环境

conda create -n flux python=3.11 -y
conda activate flux

1-2. 安装依赖模块

git clone https://github.com/black-forest-labs/flux; cd flux
pip install -e '.[all]'
pip install accelerate
pip install git+https://github.com/huggingface/diffusers.git
pip install optimum-quanto
pip install gradio

1-3. 创建 Web UI

import torchimport gradio as grfrom optimum.quanto import freeze, qfloat8, quantizefrom diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFastdtype = torch.bfloat16# schnell is the distilled turbo model. For the CFG distilled model, use:
# bfl_repo = "black-forest-labs/FLUX.1-dev"
# revision = "refs/pr/3"
#
# The undistilled model that uses CFG ("pro") which can use negative prompts
# was not released.
bfl_repo = "black-forest-labs/FLUX.1-schnell"
revision = "refs/pr/1"
# bfl_repo = "black-forest-labs/FLUX.1-dev"
# revision = "main"scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision=revision)
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision=revision)
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision=revision)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision=revision)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision=revision)# Experimental: Try this to load in 4-bit for <16GB cards.
#
# from optimum.quanto import qint4
# quantize(transformer, weights=qint4, exclude=["proj_out", "x_embedder", "norm_out", "context_embedder"])
# freeze(transformer)
quantize(transformer, weights=qfloat8)
freeze(transformer)quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)pipe = FluxPipeline(scheduler=scheduler,text_encoder=text_encoder,tokenizer=tokenizer,text_encoder_2=None,tokenizer_2=tokenizer_2,vae=vae,transformer=None,
)
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
pipe.enable_model_cpu_offload()def generate(prompt, steps, guidance, width, height, seed):if seed == -1:seed = torch.seed()generator = torch.Generator().manual_seed(int(seed))image = pipe(prompt=prompt,width=width,height=height,num_inference_steps=steps,generator=generator,guidance_scale=guidance,).images[0]return imagedemo = gr.Interface(fn=generate, inputs=["textbox", gr.Number(value=4), gr.Number(value=3.5), gr.Slider(0, 1920, value=1024, step=2), gr.Slider(0, 1920, value=1024, step=2), gr.Number(value=-1)], outputs="image")demo.launch(server_name="0.0.0.0")

1-4. 启动 Web UI

python flux_on_potato.py

1-5. 访问 Web UI

使用浏览器打开 http://localhost:7860 就可以访问了。

在这里插入图片描述

reference:

  • https://blackforestlabs.ai/announcing-black-forest-labs/
  • https://github.com/black-forest-labs/flux/
  • https://github.com/black-forest-labs/flux/issues/7
  • https://gist.github.com/AmericanPresidentJimmyCarter/873985638e1f3541ba8b00137e7dacd9
http://www.khdw.cn/news/61948.html

相关文章:

  • 长沙网站优化推广互联网营销顾问
  • 地方购物网站盈利模式常用的搜索引擎有
  • 淘宝客领券网站怎么做sem竞价推广代运营收费
  • 怀集住房和城乡建设部网站qq群推广平台
  • 曲靖高端网站制作网络营销研究现状文献综述
  • 什么公司做网商网站的网站推广培训
  • 网站建设中山合肥网络推广网络运营
  • 代做毕设网站黑帽seo是作弊手法
  • 做家具的网站如何写好软文推广
  • 哈尔滨网站建设服务网络技术推广服务
  • 网站查询域名访问网上接单平台
  • 京东的网站建设规划百度开户要多少钱
  • 郑州网站策划公司网站建设流程
  • 成都广告公司招聘湖南正规seo公司
  • 西安市建设厅网站seo搜索引擎优化题库
  • 想做网站去哪里做网站开发流程图
  • 网站tag 怎么实现百度识图网页版
  • 建手机网站百度云网盘资源
  • 免费的网站推广渠道魔贝课凡seo课程好吗
  • 专业网站优化方案如何做友情链接
  • 做网站哪些公司爱站官网
  • wordpress 分类不显示全文全域seo
  • 潍坊模板建站定制知名做网站的公司
  • 做个卖车票的网站怎么做平台推广员是做什么的
  • 宿州建设网站公司哪家好聚合搜索引擎
  • 云南营销型网站建设绍兴seo推广
  • 做外贸网站用哪些小语种天津优化公司
  • 重庆网络问政平台seo企业顾问
  • 中英文企业网站源码黑马it培训班出来现状
  • 自己做网站语言包怎么做电子商务是干什么的