当前位置: 首页 > news >正文

做音乐网站建设的开发平台东莞网络推广及优化

做音乐网站建设的开发平台,东莞网络推广及优化,做网站app的工资高吗,医院网站制作设计PMPP char3 – Multidimensional grids and data ​ 五一过后,有些工作要赶,抽出时间更新一下。这一章基本都熟练掌握,在做习题过程中有一些思考。这里涉及到了一点点GEMM(矩阵乘),GEMM有太多可深挖的了&a…

PMPP char3 – Multidimensional grids and data

​ 五一过后,有些工作要赶,抽出时间更新一下。这一章基本都熟练掌握,在做习题过程中有一些思考。这里涉及到了一点点GEMM(矩阵乘),GEMM有太多可深挖的了,推荐一篇博客How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog (siboehm.com)。另外,我还发现上一篇博客,有写错的地方,这篇博客的末尾做了一下勘误。这里记录我的个人理解,有不正确的地方,欢迎留言或者私信讨论。

课后习题

  1. In this chapter we implemented a matrix multiplication kernel that has each
    thread produce one output matrix element. In this question, you will
    implement different matrix-matrix multiplication kernels and compare them.
    a. Write a kernel that has each thread produce one output matrix row. Fill in
    the execution configuration parameters for the design.
    b. Write a kernel that has each thread produce one output matrix column. Fill
    in the execution configuration parameters for the design.
    c. Analyze the pros and cons of each of the two kernel designs.

答案:

a 部分 (来自大模型)

__global__ void matrixMulRow(float *A, float *B, float *C, int m, int n, int k) {int row = blockIdx.y * blockDim.y + threadIdx.y;if (row < m) {for (int col = 0; col < k; ++col) {float sum = 0;for (int i = 0; i < n; ++i) {sum += A[row * n + i] * B[i * k + col];}C[row * k + col] = sum;}}
}
dim3 threadsPerBlock(1, 256);
dim3 blocksPerGrid(1, (m + threadsPerBlock.y - 1) / threadsPerBlock.y);
matrixMulRow<<<blocksPerGrid, threadsPerBlock>>>(A, B, C, m, n, k);

b部分 (来自大模型)

__global__ void matrixMulCol(float *A, float *B, float *C, int m, int n, int k) {int col = blockIdx.x * blockDim.x + threadIdx.x;if (col < k) {for (int row = 0; row < m; ++row) {float sum = 0;for (int i = 0; i < n; ++i) {sum += A[row * n + i] * B[i * k + col];}C[row * k + col] = sum;}}
}
dim3 threadsPerBlock(256, 1);
dim3 blocksPerGrid((k + threadsPerBlock.x - 1) / threadsPerBlock.x, 1);
matrixMulCol<<<blocksPerGrid, threadsPerBlock>>>(A, B, C, m, n, k);

c部分

假设A、B、C都是行主序;这里也不使用共享内存。一次读入一个缓存行,访问一行数据的话,存在访存局部性,需要用到的数据就在缓存中;访问一列数据的话,不存在访存局部性,需要用到的数据就不在缓存中,需要再读一个缓存行。假设一个缓存行时64B,对应16个float32。

访问A访问B访问C
一个线程处理C中的一行连续访问,只访问一行。访存次数=K/16不连续访问,一次访问一列,访存次数=K;总共要访问N列,访问次数=N*K连续访问,只访问一行。访存次数=K/16
一个线程处理C中的一列不连续访问,只访问一列。访存次数=M不连续访问,一次访问一列,访存次数=K;总共要访问N列,访问次数=N*K不连续访问,只访问一列。访存次数=M

如果访存数据量较小,也就是a那种,可以直接放到寄存器中,这样访存cycle更短。

如果访存数据量较大,reg的容量就不够用,需要一部分存到L1上面,甚至L1也装不下,要从global里读取。涉及多个存储数据一致性、data hazard的问题,效率就很低。

  1. A matrix-vector multiplication takes an input matrix B and a vector C and
    produces one output vector A. Each element of the output vector A is the dot
    product of one row of the input matrix B and C, that is, A[i] = ΣB[i][j] * C[j].
    For simplicity we will handle only square matrices whose elements are single-
    precision floating-point numbers. Write a matrix-vector multiplication kernel and
    the host stub function that can be called with four parameters: pointer to the output
    matrix, pointer to the input matrix, pointer to the input vector, and the number of
    elements in each dimension. Use one thread to calculate an output vector element.

答案:

​ 其实,这道题就是参考gemm,实现gemv。就是把输出C的一个变量(C[i])映射到一个线程上,这个线程遍历j个变量,再各自点乘+求和(也就是j维度上做规约)。

​ 以下是大模型写出来的程序,我看了下没啥问题,测试了下也是ok的。输入为A和B,输出为C。

#include <iostream>
#include <vector>
#include <random>
#include <cuda_runtime.h>#define CHECK(call) \
{ \const cudaError_t error = call; \if (error != cudaSuccess) { \std::cout << "Error: " << __FILE__ << ":" << __LINE__ << ", " << cudaGetErrorString(error) << std::endl; \exit(1); \} \
}__global__ void matrixVectorMultiply(const float* A, const float* B, float* C, int rows, int cols) {int i = blockIdx.x * blockDim.x + threadIdx.x;if (i < rows) {float sum = 0.0f;for (int j = 0; j < cols; ++j) {sum += A[j] * B[i * cols + j];}C[i] = sum;}
}int main() {int rows = 1024;int cols = 768;std::vector<float> hostA(cols);std::vector<float> hostB(rows * cols);std::vector<float> hostC(rows);std::vector<float> resultC(rows);// 初始化输入数据std::random_device rd;std::mt19937 gen(rd());std::uniform_real_distribution<float> dis(-1.0, 1.0);for (int j = 0; j < cols; ++j) {hostA[j] = dis(gen);}for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {hostB[i * cols + j] = dis(gen);}}// 分配设备内存float* deviceA;float* deviceB;float* deviceC;CHECK(cudaMalloc(&deviceA, cols * sizeof(float)));CHECK(cudaMalloc(&deviceB, rows * cols * sizeof(float)));CHECK(cudaMalloc(&deviceC, rows * sizeof(float)));// 将输入数据从主机复制到设备CHECK(cudaMemcpy(deviceA, hostA.data(), cols * sizeof(float), cudaMemcpyHostToDevice));CHECK(cudaMemcpy(deviceB, hostB.data(), rows * cols * sizeof(float), cudaMemcpyHostToDevice));// 启动内核int threadsPerBlock = 256;int blocksPerGrid = (rows + threadsPerBlock - 1) / threadsPerBlock;matrixVectorMultiply<<<blocksPerGrid, threadsPerBlock>>>(deviceA, deviceB, deviceC, rows, cols);CHECK(cudaGetLastError());// 将输出数据从设备复制到主机CHECK(cudaMemcpy(hostC.data(), deviceC, rows * sizeof(float), cudaMemcpyDeviceToHost));// 验证结果正确性for (int i = 0; i < rows; ++i) {float sum = 0.0f;for (int j = 0; j < cols; ++j) {sum += hostA[j] * hostB[i * cols + j];}resultC[i] = sum;}for (int i = 0; i < rows; ++i) {if (std::abs(hostC[i] - resultC[i]) > 1e-5) {std::cout << "Result verification failed at index " << i << std::endl;return 1;}}std::cout << "Result verification passed" << std::endl;// 释放设备内存CHECK(cudaFree(deviceA));CHECK(cudaFree(deviceB));CHECK(cudaFree(deviceC));return 0;
}
  1. Consider the following CUDA kernel and the corresponding host function that
    calls it:

a. What is the number of threads per block?
b. What is the number of threads in the grid?

c. What is the number of blocks in the grid?
d. What is the number of threads that execute the code on line 05?

在这里插入图片描述

答案:a、16*32=512;b、48640;c、95;d、45000

  1. Consider a 2D matrix with a width of 400 and a height of 500. The matrix is
    stored as a one-dimensional array. Specify the array index of the matrix
    element at row 20 and column 10:
    a. If the matrix is stored in row-major order.
    b. If the matrix is stored in column-major order.

答案:a、20*400+10=8010

​ b、10*500+20=5020

  1. Consider a 3D tensor with a width of 400, a height of 500, and a depth of 300

    The tensor is stored as a one-dimensional array in row-major order.
    Specify the array index of the tensor element at x 5 10, y 5 20, and z 5 5.

答案: 5 * (400 * 500) + 10 * 400 + 5 = 1004005

勘误

在这里插入图片描述

​ 上一篇博客中,这个图里面的d_a的类型写错了,应该是int* d_a,而不是void* d_a。传入函数的是(void**)&d_a,函数结束后,d_a还是int*类型。

http://www.khdw.cn/news/60590.html

相关文章:

  • 冬青街 做网站如何建立公司网站网页
  • 做奶茶店网站鄞州seo整站优化服务
  • 宝宝个人网站模板5118营销大数据
  • 软件设计师含金量高吗武汉seo网站管理
  • 上海集团网站建设公司好整站seo排名要多少钱
  • 做套现网站优化排名案例
  • 做网站范本百度推广手机客户端
  • 做网站服务器的配置网站推广的常用方法有哪些?
  • 淘宝的网站怎么做的好网站权重怎么看
  • 新疆自治区建设厅官方网站360免费建站网页链接
  • 建设协会网站的公司域名注册价格及续费
  • 恶意刷网站百度认证号码平台
  • 旅行网站的建设目录推广点击器
  • 酒店网站开发合同百度投放平台
  • 亚马逊seo什么意思宁波seo推广优化哪家强
  • 微信购物商城windows优化大师好吗
  • 网站设计与开发专家免费拓客软件排行榜
  • 南昌做网站哪家好原创软文
  • 哪个网站可以学做包子长沙优化网站厂家
  • 展示型企业网站营销目标主要有青岛seo整站优化哪家专业
  • 苏州有哪些做网站公司好惠州网站排名提升
  • 培训教育学校的网站建设方案google store
  • 网站被降权怎么恢复搜索引擎优化英文简称为
  • 能自己做头像的网站大学生网络营销策划书
  • 网站建设大概多少钱海南seo顾问服务
  • 北京市昌平区社会建设网站企业文化案例
  • 做ppt找图片网站推广哪些app最挣钱
  • 专门做油站数据的网站seo 页面
  • 建设单位发包许可证网站百度软件应用中心
  • wordpress外贸B2C建站app注册接单平台