当前位置: 首页 > news >正文

做网站公司促销海报seo关键词排名工具

做网站公司促销海报,seo关键词排名工具,网站域名修改,做网站怎么做Python算法题集_翻转二叉树 题226:翻转二叉树1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【DFS递归】2) 改进版一【BFS迭代,节点循环】3) 改进版二【BFS迭代,列表循环】 4. 最优算法 本文为Python算法题集…

 Python算法题集_翻转二叉树

  • 题226:翻转二叉树
  • 1. 示例说明
  • 2. 题目解析
    • - 题意分解
    • - 优化思路
    • - 测量工具
  • 3. 代码展开
    • 1) 标准求解【DFS递归】
    • 2) 改进版一【BFS迭代,节点循环】
    • 3) 改进版二【BFS迭代,列表循环】
  • 4. 最优算法

本文为Python算法题集之一的代码示例

题226:翻转二叉树

1. 示例说明

  • 示例 1:

    在这里插入图片描述

    输入:root = [4,2,7,1,3,6,9]
    输出:[4,7,2,9,6,3,1]
    

    示例 2:

    在这里插入图片描述

    输入:root = [2,1,3]
    输出:[2,3,1]
    

    示例 3:

    输入:root = []
    输出:[]
    

    提示:

    • 树中节点数目范围在 [0, 100]
    • -100 <= Node.val <= 100

2. 题目解析

- 题意分解

  1. 本题为二叉树的翻转
  2. 基本的设计思路是深度优先算法【DFS(Depth-First Search)】、广度有限算法【BFS(Breadth-First Search)】

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 可以考虑采用迭代法改写递归函数,提高性能

- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大,因此需要本地化测试解决这个问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题本地化超时测试用例自己生成,详见【最优算法章节】

3. 代码展开

1) 标准求解【DFS递归】

采用深度优先算法,标准递归实现

马马虎虎,超过66%在这里插入图片描述

import CheckFuncPerf as cfpclass Solution:def invertTree_base(self, root):if not root:return Noneroot.left, root.right = root.right, root.leftself.invertTree_base(root.left)self.invertTree_base(root.right)return rootaroot = generate_binary_tree(ilen)
aSolution = Solution()
result = cfp.getTimeMemoryStr(Solution.invertTree_base, aSolution, aroot)
print(result['msg'], '执行结果 = {}'.format(result['result'].val))# 运行结果
函数 invertTree_base 的运行时间为 600.12 ms;内存使用量为 4.00 KB 执行结果 = 71

2) 改进版一【BFS迭代,节点循环】

通过堆栈结构的迭代算法来改写递归算法,单次循环一个节点

性能良好,超过82%在这里插入图片描述

import CheckFuncPerf as cfpclass Solution:def invertTree_ext1(self, root):if not root:return Nonestacktree = [root]while stacktree:tmpnode = stacktree.pop()tmpnode.left, tmpnode.right = tmpnode.right, tmpnode.leftif tmpnode.right:stacktree.append(tmpnode.right)if tmpnode.left:stacktree.append(tmpnode.left)return rootaroot = generate_binary_tree(ilen)
aSolution = Solution()
result = cfp.getTimeMemoryStr(Solution.invertTree_ext1, aSolution, aroot)
print(result['msg'], '执行结果 = {}'.format(result['result'].val))# 运行结果
函数 invertTree_ext1 的运行时间为 546.13 ms;内存使用量为 0.00 KB 执行结果 = 7

3) 改进版二【BFS迭代,列表循环】

通过队列结构的迭代算法来改写递归算法,每次循环一个批次,减少了部分循环判断计算

勉强通关,超过19%在这里插入图片描述

import CheckFuncPerf as cfpclass Solution:def invertTree_ext2(self, root):if not root:return NonequeueTree = [root]while queueTree:for iIdx in range(len(queueTree)):tmpnode = queueTree.pop()tmpnode.left, tmpnode.right = tmpnode.right, tmpnode.leftif tmpnode.left:queueTree.append(tmpnode.left)if tmpnode.right:queueTree.append(tmpnode.right)return rootaroot = generate_binary_tree(ilen)
aSolution = Solution()
result = cfp.getTimeMemoryStr(Solution.invertTree_ext2, aSolution, aroot)
print(result['msg'], '执行结果 = {}'.format(result['result'].val))# 运行结果
函数 invertTree_ext2 的运行时间为 471.11 ms;内存使用量为 0.00 KB 执行结果 = 21

4. 最优算法

根据本地日志分析,最优算法为第3种方式【BFS迭代,列表循环】inorderTraversal_ext2

import random
ilen = 1000000
def generate_binary_tree(node_count):if node_count <= 0:return Noneroot = TreeNode(random.randint(1, 100))left = generate_binary_tree(node_count // 2)right = generate_binary_tree(node_count // 2)root.left = leftroot.right = rightreturn root
aroot = generate_binary_tree(ilen)
aSolution = Solution()
result = cfp.getTimeMemoryStr(Solution.invertTree_base, aSolution, aroot)
print(result['msg'], '执行结果 = {}'.format(result['result'].val))
aroot = generate_binary_tree(ilen)
result = cfp.getTimeMemoryStr(Solution.invertTree_ext1, aSolution, aroot)
print(result['msg'], '执行结果 = {}'.format(result['result'].val))
aroot = generate_binary_tree(ilen)
result = cfp.getTimeMemoryStr(Solution.invertTree_ext2, aSolution, aroot)
print(result['msg'], '执行结果 = {}'.format(result['result'].val))# 算法本地速度实测比较
函数 invertTree_base 的运行时间为 600.12 ms;内存使用量为 4.00 KB 执行结果 = 71
函数 invertTree_ext1 的运行时间为 546.13 ms;内存使用量为 0.00 KB 执行结果 = 7
函数 invertTree_ext2 的运行时间为 471.11 ms;内存使用量为 0.00 KB 执行结果 = 21

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

http://www.khdw.cn/news/57789.html

相关文章:

  • 怎样做寻亲网站志愿者简述网络营销的特点
  • 网站模板下载带后台东莞seo网站优化排名
  • 房产网站流量排名搜索引擎优化策略有哪些
  • 手机网站做指向苏州网络公司
  • 鲜花网站开发背景网站收录提交
  • 在线音乐播放网站模板网络营销推广实训报告
  • 做营销型网站多少钱青岛seo代理计费
  • 私自建设网站百度免费seo
  • 做网站迅雷下载链接设置个人网页怎么制作
  • 茶叶批发 技术支持 东莞网站建设搜索引擎营销方案例子
  • 海外电商平台关键词优化公司网站
  • 自己做黑彩网站网站收录网
  • 大同网站开发企业品牌类网站有哪些
  • 广州哪些做网站的公司推广怎么推
  • 网站搭建平台源码郑州网站顾问
  • 官方网站建设进度表百度网址大全 简单版
  • 阿里巴巴做网站的搜索软件排行榜前十名
  • wordpress修改源码seo研究中心学员案例
  • 徐州网站建设策划网站关键词排名优化客服
  • 衡水做网站电话免费域名的网站
  • 常州做网站一般多少钱能打开各种网站的搜索引擎
  • 做网站公司融资多少钱手机百度识图网页版入口
  • 优化器百度推广优化师是什么
  • 网站备案多少天免费网站
  • 福州建设网站公司windows优化大师可以卸载吗
  • 网站建设公司做销售前景好不好?上海企业推广
  • 个人网站建设优化品牌软文范文
  • 深圳餐饮网站建立经典软文广告
  • 高级wordpress搜索搜索引擎优化实训
  • 合肥市人民政府领导名单跟我学seo从入门到精通