当前位置: 首页 > news >正文

网站建设长春网站统计器

网站建设长春,网站统计器,网站数字证书怎么做,深圳找做网站文章目录 机器学习专栏 主要思想 主流方法 投影 二维投射到一维 三维投射到二维 流形学习 PCA主成分分析 介绍 代码 内核PCA 具体代码 LLE 结语 机器学习专栏 机器学习_Nowl的博客-CSDN博客 主要思想 介绍:当一个任务有很多特征时,我们…

文章目录

机器学习专栏 

主要思想 

主流方法

投影

二维投射到一维

三维投射到二维

流形学习

PCA主成分分析

介绍

代码

内核PCA

具体代码

LLE

结语


机器学习专栏 

机器学习_Nowl的博客-CSDN博客

主要思想 

介绍:当一个任务有很多特征时,我们找到最主要的,剔除不重要的 

主流方法

1.投影

投影是指找到一个比当前维度低的维度面(或线),这个维度面或线离当前所有点的距离最小,然后将当前维度投射到小维度上

二维投射到一维

三维投射到二维

2.流形学习

当然,当数据集投影后在低纬度上有重叠的时候,我们应该考虑别的方法

我们来看看被称为瑞士卷数据集的三维图

经过两种降维数据的处理,我们得到下面两幅二维数据可视化图 

我们可以看到,左边的数据 有很多重合的点,它使用的是投影技术,而右图就像将数据集一层层展开一样,这就是流形学习

我们接下来介绍三种常见的具体实现这些的降维方法

一、PCA主成分分析

介绍

pca主成分分析是一种投影降维方法

PCA主成分分析的思想就是:识别最靠近数据的超平面,然后将数据投影到上面

代码

这是一个最简单的示例,有一个两行三列的特征表x,我们将它降维到2个特征(n_components参数决定维度)

from sklearn.decomposition import PCAx = [[1, 2, 3], [3, 4, 5]]pca = PCA(n_components=2)
x2d = pca.fit_transform(x)print(x)
print(x2d)

 运行结果

二、三内核PCA

内核可以将实例隐式地映射到高维空间,这有利于模型寻找到数据的特征(维度过低往往可能欠拟合),其他的思想与PCA相同

具体代码

1.线性内核

特点: 线性核对原始特征空间进行线性映射,相当于没有映射,直接在原始空间上进行PCA。适用于数据在原始空间中是线性可分的情况。

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='linear', gamma=0.1)
X_kpca = kpca.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

2.rbf内核

特点: RBF核是一种常用的非线性核函数,它对数据进行非线性映射,将数据映射到高维空间,使得在高维空间中更容易分离。gamma参数控制了映射的“尺度”或“平滑度”,较小的gamma值导致较远的点对结果有较大的贡献,产生更平滑的映射,而较大的gamma值使得映射更加局部化。

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='rbf', gamma=0.04)
X_kpca = kpca.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

3.sigmoid内核

特点: Sigmoid核也是一种非线性核函数,它在数据上执行类似于双曲正切(tanh)的非线性映射。它对数据进行映射,使其更容易在高维空间中分离。gamma参数和coef0参数分别控制了核函数的尺度和偏置。

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用内核PCA将数据降为二维
kpca = KernelPCA(n_components=2, kernel='sigmoid', gamma=0.04)
X_kpca = kpca.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('Kernel PCA of Swiss Roll Dataset')
plt.show()

三、LLE

局部线性嵌入(Locally Linear Embedding,LLE)是一种非线性降维算法,用于保留数据流形结构。

以下是使用LLE展开瑞士卷数据集的代码

import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from sklearn.manifold import LocallyLinearEmbedding# 生成瑞士卷数据集
X, color = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)# 使用LLE将数据降为二维
lle = LocallyLinearEmbedding(n_neighbors=12, n_components=2, random_state=42)
X_lle = lle.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_lle[:, 0], X_lle[:, 1], c=color, cmap='viridis', edgecolor='k')
plt.title('LLE of Swiss Roll Dataset')
plt.show()

结语

降维的方法不止这几种,重要的是我们要理解为什么要降维——减少不重要的特征,同时也能加快模型的训练速度

http://www.khdw.cn/news/56958.html

相关文章:

  • java可以做网站前台吗seo关键词优化系统
  • 天津专业的做网站与运营的公司seo外包资讯
  • 重庆公司核名在哪个网站上海网站设计公司
  • 网站建设的3个阶段整合网络营销是什么
  • 局域网网站免费设计模板网站
  • jsp网站开发晋江怎么交换友情链接
  • 地板网站建设方案长沙市最新疫情
  • 橙色在网站中的应用一个公司可以做几个百度推广
  • 青白江网站建设排名seo怎么样
  • 网站的会员功能哈尔滨网络优化推广公司
  • 我做百度_上面有手机网站的_为什么还要做手机网站英文网站seo发展前景
  • 用python做 网站论坛百度号码查询平台
  • 威海城乡建设局网站哈尔滨seo优化培训
  • 海南行指专业网站开发谷歌google地图
  • 中国建设银行网站用户是什么推广代理公司
  • 网站建设推广人员网址查询入口
  • 顺义网站建设公司软文代写网
  • 做离心开关的企业的网站平板电视seo优化关键词
  • 做服装网站服务全是广告的网站
  • 企业邮箱多少钱网络seo
  • 网站规划的原则有哪些seo教学免费课程霸屏
  • 怎么用自己主机做网站百度一下百度官网
  • 自己的网站怎么做排名seo群发软件
  • 专业做网站技术全网搜索指数
  • 一个网站做几个关键词手机百度2020
  • 长沙专业做网站手机优化助手下载
  • 网站seo测评百度公司排名多少
  • 网站建设素材模板淘宝seo搜索引擎原理
  • 使用java做后台网站接app推广接单平台
  • 有没有接活做的网站火锅店营销方案