当前位置: 首页 > news >正文

无锡网站制作公司报价成都百度百科

无锡网站制作公司报价,成都百度百科,宜昌 房地产网站建设,网站是什么东西Softmax 回归 基本原理 回归和分类,是两种深度学习常用方法。回归是对连续的预测(比如我预测根据过去开奖列表下次双色球号),分类是预测离散的类别(手写语音识别,图片识别)。 现在我们已经对回…

Softmax 回归

基本原理

回归和分类,是两种深度学习常用方法。回归是对连续的预测(比如我预测根据过去开奖列表下次双色球号),分类是预测离散的类别(手写语音识别,图片识别)。

1699720169075

现在我们已经对回归的处理有一定的理解了,如何过渡到分类呢?

假设我们有 n 类,首先我们要编码这些类让他们变成数据。所有类变成一个列向量。

y = [ y 1 , y 2 , . . . y n ] T y=[y_1,y_2,...y_n]^T y=[y1,y2,...yn]T

有一个数据属于第 i 类,那么他的列向量就是:

y = [ 0 , 0 , . . . , 1 , . . . , 0 , 0 ] T y=[0,0,...,1,...,0,0]^T y=[0,0,...,1,...,0,0]T

也就是只有他所在的那个类的元素=1.

可以用均方损失训练,通过概率判断最终选用哪一个。

Softmax 回归就是一种分类方式(回归问题在多分类上的推广)。首先确定输入特征数和输出类别数。比如上图中我们有4个特征和3个可能的类别,那么计算各自概率的公式包括3个线性回归:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以看出 Softmax 是全连接的单层神经网络。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们让所有输出结果归一化后,从中选择出最大可能的,置信度最高的分类结果。

image-20231112100423488

采用 e 的指数可以让值全变为非负。

用真实的概率向量-我们预测得到的概率向量就是损失。真实值就是只有一个1的列向量。

交叉熵损失:

image-20231112101259670

可见**分类问题,我们不关心对非正确的预测值,只关心正确预测值是否足够大。**因为正确值是只有一个元素为1的列向量。

常用的损失函数

L2 Loss:均方损失。

image-20231112101555142

L1 Loss:绝对值损失。

image-20231112101829868

L2 梯度是一条倾斜直线,对于梯度下降算法等更为合适;L1 是一个跳变,梯度要么 -1 要么 1. 如图是 L1 L2 的梯度。

image-20231112102551104

我们可以结合两者,得到一个新的损失函数(鲁棒损失 Huber Robust):

KaTeX parse error: {equation} can be used only in display mode.

image-20231112102721527

图像分类数据集

MINIST 是一个常用图像分类数据集,但是过于简单。后来的 upgrade 版叫 Fashion-MINIST(服装分类).

首先,我们研究研究怎么加载训练数据集,以便后面测试算法用。

# 导包
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2ld2l.use_svg_display()d2l.use_svg_display()# 下载数据集并读取到内存
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)		# 训练数据集
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)	# 测试数据集用于评估性能# 定义函数用于返回对应索引的标签
def get_fashion_mnist_labels(labels):  #@save"""返回Fashion-MNIST数据集的文本标签"""text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]# 图像可视化,让结果看着更直观,比如下面那个绿色图的样子
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save"""绘制图像列表"""figsize = (num_cols * scale, num_rows * scale)_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)axes = axes.flatten()for i, (ax, img) in enumerate(zip(axes, imgs)):if torch.is_tensor(img):# 图片张量ax.imshow(img.numpy())else:# PIL图片ax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])return axes# 我们先读一点数据集看看啥样的
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

1699980345931

# 通过内置数据加载器读取一批量数据,自动随机打乱读取,不需要我们自己定义
batch_size = 256def get_dataloader_workers():  #@save"""使用4个进程来读取数据"""return 4train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers())

测量以上用时基本2-3s。

总结整合以上数据读取过程,代码如下:

def load_data_fashion_mnist(batch_size, resize=None):  #@save"""下载Fashion-MNIST数据集,然后将其加载到内存中"""trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize))trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))

加载图像还可以调整其大小。

http://www.khdw.cn/news/55359.html

相关文章:

  • 南京网站建设制作黑河seo
  • jsp网站开发实例教程惠州网站建设
  • 网站建设用图片吉林seo关键词
  • 趣闻网站如何做买外链网站
  • 门户网站模板免费下载湘潭网站设计外包公司
  • 做网站 信科网站建设便宜2023广州疫情最新消息今天
  • 旅游网站的导航怎么做餐饮营销案例100例
  • 开发公司管理规章制度1688关键词怎么优化
  • 大连响应式网站制作移投界seo
  • 微网站和web网站首页seo的宗旨是什么
  • 网站将要准备建设的内容百度快照是干什么的
  • 做网站用b s和c s网店推广软文范例
  • 西安专业做网站的公司哪家好青岛网络推广
  • 公司注册网上查询网站如何进行seo
  • 日语网站设计湖南靠谱的关键词优化哪家好
  • seo网站排名优化软件seo百度点击软件
  • 经营性网站备案需要哪些东西推广普通话文字素材
  • wordpress置顶文章不生效手机百度关键词优化
  • 网络游戏开发基础湖南优化电商服务有限公司
  • 公司网站建设价设计网站模板
  • 南阳seo搜索引擎优化要考虑哪些方面
  • 网站 备案地建站优化
  • 合肥网站建设套餐seo门户网价格是多少钱
  • 可以做图接单的网站sem培训班
  • 网站备案主体信息变更郑州搜索引擎优化公司
  • 天元建设集团有限公司恒大网站设计优化
  • wordpress增加自定义栏目seo岗位
  • 传诚信网站建设app推广营销
  • 网页制作三剑客下载武汉seo网站
  • 新疆生产建设兵团 经信委网站seo诊断工具有哪些