当前位置: 首页 > news >正文

推广网站的方法百度教育官网

推广网站的方法,百度教育官网,衢江网站建设,建设网站公司哪好视觉SLAM的后端主要解决状态估计问题,它是优化相机轨迹和地图点的过程,从数学上看属于非线性优化问题。后端的目标是结合传感器数据,通过最优估计获取系统的状态(包括相机位姿和场景结构),在状态估计过程中…

视觉SLAM的后端主要解决状态估计问题,它是优化相机轨迹和地图点的过程,从数学上看属于非线性优化问题。后端的目标是结合传感器数据,通过最优估计获取系统的状态(包括相机位姿和场景结构),在状态估计过程中通常引入概率模型,以最大化后验概率或最小化代价函数的方式求解。以下从概述、BA(Bundle Adjustment,捆绑调整)与图优化的角度,全面介绍视觉SLAM的后端实现。

概述

状态估计的概率解释

SLAM问题本质上是一个状态估计问题,常用贝叶斯滤波进行建模: p ( x t ∣ z 1 : t , u 1 : t ) ∝ p ( z t ∣ x t ) ∫ p ( x t ∣ x t − 1 , u t ) p ( x t − 1 ∣ z 1 : t − 1 , u 1 : t − 1 ) d x t − 1 p(\mathbf{x}_t|\mathbf{z}_{1:t},\mathbf{u}_{1:t})\propto p(\mathbf{z}_t|\mathbf{x}_t)\int p(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{u}_t)p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1},\mathbf{u}_{1:t-1})d\mathbf{x}_{t-1} p(xtz1:t,u1:t)p(ztxt)p(xtxt1,ut)p(xt1z1:t1,u1:t1)dxt1

  • x t \mathbf{x}_t xt :系统状态(如相机位姿)。
  • z t \mathbf{z}_t zt :观测(如图像特征点)。
  • u t \mathbf{u}_t ut :控制量或运动模型。

该公式表明,状态估计是基于当前观测、运动模型和历史状态的一种递归估计。

线性系统和卡尔曼滤波(KF)

  • 线性系统模型:卡尔曼滤波假设状态转移方程和观测方程是线性关系:
    x t = A t x t − 1 + B t u t + w t \mathbf{x}_t=\mathbf{A}_t\mathbf{x}_{t-1}+\mathbf{B}_t\mathbf{u}_t+\mathbf{w}_t xt=Atxt1+Btut+wt
    z t = H t x t + v t \mathbf{z}_t=\mathbf{H}_t\mathbf{x}_t+\mathbf{v}_t zt=Htxt+vt
    其中, w t \mathbf{w}_t wt v t \mathbf{v}_t vt是噪声,通常服从高斯分布。
  • 卡尔曼滤波提供了最优状态估计:
    • 预测:基于运动模型预测当前状态。
    • 更新:结合观测数据修正状态。

卡尔曼滤波具有很高的计算效率,但只能处理线性系统。

非线性系统和扩展卡尔曼滤波(EKF)

  • 在实际SLAM中,状态转移方程和观测方程通常是非线性的: x t = f ( x t − 1 , u t ) + w t \mathbf{x}_t=f(\mathbf{x}_{t-1},\mathbf{u}_t)+\mathbf{w}_t xt=f(xt1,ut)+wt
    z t = h ( x t ) + v t \mathbf{z}_t=h(\mathbf{x}_t)+\mathbf{v}_t zt=h(xt)+vt
  • EKF通过对非线性函数进行一阶线性化,将非线性问题近似为线性问题:
    • 使用雅可比矩阵线性化 𝑓(⋅) 和 ℎ(⋅)
    • 在每一步更新中,使用卡尔曼滤波进行递归估计。

EKF的讨论

  • 优点:
    • EKF可以处理非线性系统,适用于SLAM问题。
  • 局限性:
    • 一阶线性化导致近似误差,特别是在非线性程度较高时效果较差。
    • 计算复杂度较高,不适合大规模SLAM系统。

因此,在实际的视觉SLAM中,后端更多使用非线性优化方法,如捆绑调整(BA)与图优化。

BA与图优化

投影模型与BA代价函数

  • 投影模型
    在视觉SLAM中,2D观测点 z i \mathbf{z}_i zi 与3D地图点 P j \mathbf{P}_j Pj 的关系由投影模型描述: z i = π ( K [ R ∣ t ] P j ) \mathbf{z}_i=\pi(\mathbf{K}[\mathbf{R}|\mathbf{t}]\mathbf{P}_j) zi=π(K[Rt]Pj)
    • K:相机内参矩阵。
    • [ R ∣ t ] [\mathbf{R}|\mathbf{t}] [Rt]:相机位姿。
    • π(⋅):将3D点投影到图像平面。
  • BA代价函数
    BA的目标是最小化重投影误差,代价函数为: E = ∑ i , j ρ ( ∥ z i − π ( K [ R i ∣ t i ] P j ) ∥ 2 ) E=\sum_{i,j}\rho\left(\|\mathbf{z}_i-\pi(\mathbf{K}[\mathbf{R}_i|\mathbf{t}_i]\mathbf{P}_j)\|^2\right) E=i,jρ(ziπ(K[Riti]Pj)2)
    • ρ ( ⋅ ) \rho(\cdot) ρ():鲁棒核函数,用于减小异常值的影响。

BA的求解

BA是一个非线性最小二乘优化问题,通常使用高斯-牛顿法或列文伯格-马夸尔特(LM)法求解:

  • 高斯-牛顿法:直接使用二阶近似求解非线性问题,收敛快但对初值敏感。
  • LM方法:在梯度下降和高斯-牛顿之间平衡,鲁棒性更好。

具体流程:

  • 初始化相机位姿和地图点坐标。
  • 计算雅可比矩阵,并构造稀疏的线性方程。
  • 迭代更新位姿和地图点,直至误差收敛。

稀疏性与边缘化

  • 稀疏性
    BA问题的雅可比矩阵具有稀疏性,因为每个观测点仅依赖于特定的相机位姿和地图点。利用稀疏矩阵计算,可以显著提高优化效率。
  • 边缘化
    在SLAM中,为了减小计算量,会将旧的状态变量边缘化:
    • 将不再需要优化的变量(如历史关键帧)边缘化。
    • 通过边缘化保持稀疏结构,并降低优化问题的维度。

鲁棒核函数

实际观测中常有异常值(outliers),如错误匹配的特征点。为减小异常值对优化的影响,BA中引入鲁棒核函数:

  • 常见核函数有Huber核、Cauchy核等。
  • 核函数通过降低异常值的权重,使得优化结果更加鲁棒。

总结

视觉SLAM后端通过概率模型和非线性优化方法实现状态估计和地图构建。其核心任务是通过最大化后验概率或最小化重投影误差,优化相机轨迹和地图点位置。

  • 状态估计:从卡尔曼滤波(KF)到扩展卡尔曼滤波(EKF),提供递归的状态更新方案。
  • BA与图优化:通过非线性最小二乘优化(如BA),实现全局优化。
  • 鲁棒性和效率:利用稀疏矩阵计算、边缘化和鲁棒核函数,提升系统的计算效率和鲁棒性。

这种多层次的优化体系是视觉SLAM后端的核心,也是其能在复杂环境中实现鲁棒性能的关键。

http://www.khdw.cn/news/5469.html

相关文章:

  • 衡水建网站多少钱网站推广包括
  • 要想学做网站拼多多关键词怎么优化
  • 做网站要学什么十大最靠谱教育培训机构
  • 腾讯云服务器centos做静态网站金华seo
  • 做暖暖视频网站有哪些免费的推文制作网站
  • 宿州网站开发搜索网页内容
  • 苏州网站建设制作开发公司网络seo软件
  • 云空间wordpress工具seo
  • 建个人网站要多少钱外链生成
  • .net 网站开发权限设计电商运营公司
  • 网站地图 css创新驱动发展战略
  • 苏州网站建设制作设计网站推广排名服务
  • 成都工业学院文献检索在哪个网站做品牌营销战略
  • 一流的镇江网站建设合肥网站推广
  • 校园网站做等级保护关键词优化一年多少钱
  • 河南省监理协会官方网站建设友情链接买卖代理
  • 怎么进入wordpress后台改网站优化公司上海
  • 河北省住房城乡建设网站如何在百度推广自己的产品
  • 郑州网站建设seo优化百度搜索量
  • 学校网站建设电话网站设计与开发
  • 广州网站制作多少钱公司想做个网站怎么办
  • 做网站需要什么花费网站建设营销型
  • 二级a做爰片免费网站网站下载
  • 做塑胶网站需要什么石家庄seo公司
  • wordpress图片双击放大seo可以提升企业网站的
  • 国内网页做的好看的网站跨境电商有哪些平台
  • 衢江网站建设关键词排名怎么做上去
  • 手机必备网站如何创建一个app平台
  • 建设网站的目标免费建自己的网站
  • 全国各城市疫情高峰感染高峰进度seo快速排名首页