当前位置: 首页 > news >正文

h5互动网站建设电脑培训班一般多少钱

h5互动网站建设,电脑培训班一般多少钱,网站封面制作,行业网站设计[数据结构]时间复杂度与空间复杂度 如何衡量一个算法的好坏 long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) Fib(N-2); } 这是一个求斐波那契数列的函数&#xff0c;使用递归的方法求得&#xff0c;虽然代码看起来很简洁&#xff0c;但是简洁真的就好吗&#…

[数据结构]时间复杂度与空间复杂度

如何衡量一个算法的好坏

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}  

这是一个求斐波那契数列的函数,使用递归的方法求得,虽然代码看起来很简洁,但是简洁真的就好吗?

这就是我们本节要学的时间复杂度和空间复杂度要去讨论的话题,等理解了之后再回头来看这道题。

算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此**衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。**
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

时间复杂度的概念

时间复杂度的定义在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,理论上是不能算出来的,只有你把程序在计算机上跑一遍之后才能知道,但是每一个算法我们都要上机测试的话很麻烦,所以才有了时间复杂度这个概念。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。也就是说:

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

来看一个计算例子:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count; }printf("%d ",count); 

问这个算法时间复杂度是多少?

如果从第一行来算的话,我们一共有10行代码,也就是有限次,并且由于中间有循环,所以有代码是被执行了多次,所以时间复杂度结果是:
F(N)=N2+2N+10F(N)=N^2+2N+10 F(N)=N2+2N+10
这时候我们就要考虑一下了,既然时间复杂度是一个函数,这里的算法还算简单,如果是一些复杂的算法时间复杂度岂不是很复杂,所以我们有了大O的渐进表示法,N取不同值F(N)当然也是不同的,当N趋向于无穷大时,其实后面2N+10当然是可以忽略的,所以我们只保留函数的最高的那个量级即可。

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

大O阶方法表示:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

例如上面O(N2),如果N2前面有系数的话也是可以去掉的。

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

image-20230222201933879

当考虑一个算法时:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

当分情况考虑时,我们还有最好情况,平均情况,和最坏情况之分,我们计算**时间复杂度通常来讲我们是考虑最坏情况的**。

小试牛刀

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;	}printf("%d\n", count);
}  

答案:O(N)

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}  

答案:O(M+N)

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}  

答案:O(1)

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

答案:O(strlen(str))

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

答案:O(N^2)

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

答案:O(logN),logN是log以2为底N的对数。提示:要分析程序的语义,不要只数循环

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

答案:O(N),通常递归的时间复杂度通常是递归的深度

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

答案:O(2^N)

只有这个比较有难度,这个递归实际上是一个二叉树的结构

image-20230223132921975

每一层的次数都是一个等比数列,求和即可得到结果。

空间复杂度

空间复杂度概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用

大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外

空间来确定。

小试牛刀

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

答案:O(1)

因为其中只创建了3个变量,也就是常数个。

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

答案:O(N)

在栈上开辟了N块空间,空间复杂度是O(N)

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

答案:O(N)

这个是有难度的,要对函数栈帧理解的比较深刻,并且知道这个递归是怎么进行的,

二叉树结构的递归调用实际上是深度优先:

image-20230223141534813

只有当最左边的调用一直到底时返回才会调用右边,当函数返回时,函数的栈帧就已经销毁了,所以再次回来时,还是同一块空间,并没有额外的空间开销,

所以最终空间复杂度为O(N)

http://www.khdw.cn/news/54597.html

相关文章:

  • 深圳网站制作培训宁波抖音seo搜索优化软件
  • 网站推广优化软件网站seo查询
  • 天门建站怎么可以让百度快速收录视频
  • 购物网站素材semir是什么牌子
  • 网页美工设计毕业论文百度搜索引擎优化的养成良好心态
  • 在360上做网站怎么样合肥做网络推广的公司
  • 网站建设应对客户问题的话术关键词优化系统
  • 搜狗网站优化软件最好用的免费建站
  • 网站备案是怎么回事互联网广告
  • 替别人做设计的网站多少钱如何做网站优化
  • 仙桃网站定制百度网络营销app
  • 潮州建设局网站软文推广文章范文1000
  • 中国建设银行网站简介网站免费制作平台
  • jqueryui做的网站推广引流吸引人的文案
  • 开发wordpress安卓安卓优化大师最新版下载
  • 东莞建设最好的镇新余seo
  • 优秀网站建设方案硬件优化大师下载
  • 如何自己做优惠券网站百度竞价怎么做开户需要多少钱
  • 网站首屏做多大怎么制作一个网站
  • 魔方网站建设如何进行seo搜索引擎优化
  • 个人求职网站怎么做seo权重查询
  • 备案 网站服务内容百度网盘客服在线咨询
  • 单页面的网站模板软文写作服务
  • 西安找公司建网站制作链接的小程序
  • 河南网站托管优化网站开发用什么语言
  • 自己做副业可以抢哪个网站站长工具app下载
  • 女生wordpress网站适合做网销的一天都在干嘛
  • 网站建设jsp账户竞价托管公司
  • 海南省建设银行官方网站招聘湖南正规seo优化报价
  • 电子商务专业网站外贸网络推广经验