当前位置: 首页 > news >正文

wordpress本地做好如何改站点地址seo搜索引擎优化工具

wordpress本地做好如何改站点地址,seo搜索引擎优化工具,wordpress 可道云,网站开发开发需求文档模板本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆…

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇

向量究竟是什么?
向量的线性组合,基与线性相关
矩阵与线性相关

矩阵乘法与线性变换
三维空间中的线性变换
行列式
逆矩阵,列空间,秩与零空间
克莱姆法则
非方阵
点积与对偶性
叉积
以线性变换眼光看叉积
基变换
特征向量与特征值
抽象向量空间
快速计算二阶矩阵特征值
张量,协变与逆变和秩

文章目录

  • 前言
  • 向量究竟是什么?
  • 向量的线性组合,基于线性相关
  • 矩阵与线性相关

前言

天道中丁元英说过一句话:佛说,看山是山,看水是水,普通大众寄情山水之间时,如神一般的丁元英却早已看透文化属性;今天我们不研究这么高深的哲学,回到线性代数,向量,矩阵对于我来讲只不过是一堆数字,但切换到神的视角,他们却是几何与变换,瞬间让线性代数变得更加立体生动,今天我们就从几何的角度去探索线性代数的本质。

向量究竟是什么?

通过“究竟”一词可见,对于向量的含义,存在不同的解释,目前,主要有三种解释:

⑴从物理学家的角度看:向量是指向空间的箭头,它有两个属性:长度和方向,无论怎么移动他都是同一个向量。
三维空间中的向量

⑵从计算机角度看:向量是有序的数字列表,例如对于房价预测而言,房子的面积,房间数就可以看作是一个向量: [ 80 4 ] \begin{bmatrix}80\\4\end{bmatrix} [804]

⑶从数学家的角度看:向量可以是任何东西,只要具有向量和向量加法,标量和向量乘法这两种运算规律的事务都可以看作是向量

v ⃗ + w ⃗ \vec{v} +\vec{w} v +w

2 v ⃗ 2\vec{v} 2v

例如:
[ − 4 10 ] + [ 20 1 ] = [ 16 11 ] \begin{equation*} \begin{bmatrix} -4\\ 10 \end{bmatrix} +\begin{bmatrix} 20\\ 1 \end{bmatrix} =\begin{bmatrix} 16\\ 11 \end{bmatrix} \end{equation*} [410]+[201]=[1611]

2 ∗ [ 80 4 ] = [ 160 8 ] \begin{equation*} 2*\begin{bmatrix} 80\\ 4 \end{bmatrix} =\begin{bmatrix} 160\\ 8 \end{bmatrix} \end{equation*} 2[804]=[1608]

由于数学家的角度过于抽象,这就出现了开头讲的,换个角度看问题,从几何角度看待线性代数,对于向量而言,就是在特定坐标系下,以原点为起点,指向某个方向的箭头:
二维向量

三维向量

现在已经有了使用几何方式表达向量的方法,下面让我们从几何角度重新审视向量的两种运算:

对于 v ⃗ + w ⃗ \vec{v} +\vec{w} v +w 而言,移动w到v的末尾,连接v的头和w的尾就是结果向量。

在这里插入图片描述

对于 2 v ⃗ 2\vec{v} 2v 而言,向量的方向不变,长度变为原来的两倍,如果标量是小数,则是缩小向量的长度,如果是负数,则是反方向缩放向量的长度。
在这里插入图片描述

向量的线性组合,基于线性相关

基向量:

“单位“是数学中必不可少的概念,缺少单位,数字变得毫无意义,同样,对于使用几何表示向量而言,也有存在单位的概念,这就是“基向量”,它代表指向x,y轴,长度为1的向量,我们分别用 i ⃗ \vec{i} i j ⃗ \vec{j} j 表示。
坐标基

有了基的概念后,向量的表示可以转换成以基为参照,例如向量 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32],则可以表示成: 3 ∗ i ⃗ + 2 ∗ j ⃗ 3*\vec{i} +2*\vec{j} 3i +2j
在这里插入图片描述

这里需要注意,前面我们选择指向x,y轴,且长度为1的向量作为基向量,但也可以选择不同的基,不同的基代表不同的坐标系,则对于一个向量而言,它代表不同的几何意义,例如,选择下面的v和w向量作为基向量时,向量 [ 1.5 − 0.62 ] \begin{bmatrix} 1.5\\ -0.62 \end{bmatrix} [1.50.62]代表的几何形状与 i ⃗ \vec{i} i j ⃗ \vec{j} j 为基向量时的形状是不一样的。
在这里插入图片描述

在这里插入图片描述

向量线性组合:

无论选择什么样的基向量,向量都可以写成更一般的形式: a v ⃗ + b w ⃗ a\vec{v} +b\vec{w} av +bw 我们称为向量的线性组合,a,b是标量,也称为缩放因子,v和w是向量,选择不同的缩放因子,向量的线性组合可以表示整个向量空间,也就是生成的向量可以到达平面中所有点。
不同标量值,结果向量落在不同点

但如果两个向量恰好共线时,则向量组合后的结果向量只能落在该直线上,我们称共线的两个向量是线性相关的,否则是线性无关。
在这里插入图片描述

更特殊地,当这两个向量都是0向量时,则向量组合后的结果向量只能落在原点上。

概括一下,所有可以被给定向量,用线性组合来表示的那些向量的集合,被称为给定向量张成的空间,两个不共线的向量,在二维空间中,其线性组合所张成的空间是整个二维空间;而在三维空间中,其张成的空间是三维空间中的一个面。
线性相关

线性无关

在三维空间中,三个向量的线性组合,如果其中一个向量在另两个向量张成的平面内,我们称该向量与其他两个向量线性相关,这三个向量的线性组合仍然是一个平面,只有三个向量互不线性相关时,那么这三个向量的线性组合才能张成整个三维空间。

矩阵与线性相关

矩阵:

先说结论:前面讲的向量可以视为一种带箭头的几何结构,那么矩阵就可以视为一种对几何的变换。

在线性代数中,变换是一种函数,将输入映射成输出,输入是向量,输出也是向量,同理,当输入是矩阵时,可以把矩阵分解成多个向量,那么输出也就是矩阵,变换有很多种,线性代数中只讨论线性变换,线性变换要求,任意直线变换后仍然是直线,且原点位置变换后保持不变,从几何角度看,线性变换就是拉伸,缩放,旋转。

下图变换后,直线变弯曲了,所以是非线性变换
非线性变换

下图变换后,原点位置变了,所以属于非线性变换
非线性变换

那我们如何求一个向量经过变换后的向量坐标呢?假设现有一个向量,在原始坐标系下可以表示成: v ⃗ = ( − 1 ) i ⃗ + 2 ∗ j ⃗ \vec{v} =( -1)\vec{i} +2*\vec{j} v =(1)i +2j
在这里插入图片描述

现在对向量v施加一个线性变换,根据线性变换的特性,变换后,网格仍然平行且间隔均等,假设两个基向量变换后的坐标如下图所示,向量v与两个基向量经过相同的变换变成新的基向量,那么,向量v经过变换后的向量仍然可以表示成:
v ⃗ t r a n s f o r m e d = ( − 1 ) i ⃗ t r a n s f o r m e d + 2 ∗ j t r a n s f o r m e d \begin{equation*} \vec{v}{}_{transformed} =( -1)\vec{i}{}_{transformed} +2*j{}_{transformed} \end{equation*} v transformed=(1)i transformed+2jtransformed
只不过基向量变成了变换后的基向量。
在这里插入图片描述

如上图
i ⃗ t r a n s f o r m e d = [ 1 − 2 ] \vec{i}{}_{transformed} =\begin{bmatrix} 1\\ -2 \end{bmatrix} i transformed=[12], j ⃗ t r a n s f o r m e d = [ 3 0 ] \vec{j}{}_{transformed} =\begin{bmatrix} 3\\ 0 \end{bmatrix} j transformed=[30]

变换后的v就等于: v ⃗ = ( − 1 ) [ 1 − 2 ] + 2 ∗ [ 3 0 ] = [ 5 2 ] \vec{v} =( -1)\begin{bmatrix} 1\\ -2 \end{bmatrix} +2*\begin{bmatrix} 3\\ 0 \end{bmatrix} =\begin{bmatrix} 5\\ 2 \end{bmatrix} v =(1)[12]+2[30]=[52]

也就是说,如果我们知道两个基向量变换后的向量,那么求任何一个向量经过变换后的向量的过程可以用下图所表示:
在这里插入图片描述

更进一步的,我们将两个基向量变换后的坐标向量用矩阵的形式组织起来,这个矩阵就是线性变换矩阵T。
在这里插入图片描述

对于任意一个向量A,例如, [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72],求该线性变换T对该向量的作用时,只需要用矩阵与向量相乘即可: A t r a n s f o r m e d = [ 3 2 − 2 1 ] [ 7 2 ] = 7 [ 3 − 2 ] + 2 [ 2 1 ] A_{transformed} =\begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} =7\begin{bmatrix} 3\\ -2 \end{bmatrix} +2\begin{bmatrix} 2\\ 1 \end{bmatrix} Atransformed=[3221][72]=7[32]+2[21]

如果换个视角,反过来看,如果给出一个矩阵乘法: [ 3 2 − 2 1 ] [ 7 2 ] \begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} [3221][72],我们可以把矩阵第一列 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32]当作新的基向量 i ⃗ \vec{i} i ,把矩阵的第二列 [ 2 1 ] \begin{bmatrix} 2\\ 1 \end{bmatrix} [21]当作新的基向量 j ⃗ \vec{j} j ,根据向量的几何表示,向量 [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72]用新的基向量表成: i ⃗ \vec{i} i 向正方向放大7倍, j ⃗ \vec{j} j 向正方向放大2倍,将变换后的向量相加就形成了结果向量。
在这里插入图片描述

再举个例子,看看逆时针旋转90度的变换矩阵是什么, i ⃗ \vec{i} i [ 1 0 ] \begin{bmatrix} 1\\ 0 \end{bmatrix} [10]变成 [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01] j ⃗ \vec{j} j [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01]变成 [ − 1 0 ] \begin{bmatrix} -1\\ 0 \end{bmatrix} [10],所以该变换矩阵为: [ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} [0110]

到此,就已经证明了我们在开头所说的:矩阵是一种线性变换。

http://www.khdw.cn/news/53904.html

相关文章:

  • 动态素材网站注册公司网站
  • wordpress关站网上做广告宣传
  • WordPress图片直链插件关键词优化公司费用多少
  • 霍山做网站网络营销有哪些形式
  • 好看的企业网站百度收录规则
  • 彩票app软件大全知乎seo
  • 与做网站有关的参考文献青岛网络优化厂家
  • 专业网站网站设计搜索引擎推广简称
  • 做建网站的工作一年赚几百万长沙关键词优化新报价
  • 怎么做找优惠券的网站上海seo有哪些公司
  • 孩子学编程最佳年龄八上数学优化设计答案
  • 做网站开发的公司销售百度推广外包哪家不错
  • 网站建设q-9微信推广
  • 现在网站开发模式网站seo收录
  • 做网站的ui框架营销网络推广方式有哪些
  • 做网站的软件dw百度下载安装最新版
  • 怀化网站制作seo策略工具
  • 黄梅那里有做网站的工具大全
  • aws wordpress 站群口碑营销案例2021
  • 云南网站开发公司推荐东莞seo排名公司
  • 视频网站发展好应该怎么做seo技术培训中心
  • 网站二级联菜单怎么做福建搜索引擎优化
  • opencart做的网站国内最新十大新闻
  • 找人做试管婴儿的网站九江seo公司
  • 用java做网站模板媒体:多地新增感染趋势回落
  • 大连牛人网络推广有限公司徐州关键词优化排名
  • 视频网站靠点击率赚钱品牌推广内容
  • wordpress 全站搜索网推一手单渠道
  • 金融服务网站建设如何推销网站
  • 苏州专业做网站公司哪家好网站推广的工作内容