当前位置: 首页 > news >正文

安徽省铜陵市建设局网站现在有哪些网址

安徽省铜陵市建设局网站,现在有哪些网址,北京城乡建设网站,公司做网站的好处一、Pandas简介 pandas是 Python 的核⼼数据分析⽀持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。pandas是Python进⾏数据分析的必备⾼级⼯具。 pandas的主要数据结构是 **Series(**⼀维数据)与 DataFrame (⼆维数据…

一、Pandas简介

在这里插入图片描述

  • pandas是 Python 的核⼼数据分析⽀持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。pandas是Python进⾏数据分析的必备⾼级⼯具。

  • pandas的主要数据结构是 **Series(**⼀维数据)与 DataFrame (⼆维数据),这两种数据结构⾜以处理⾦融、统计、社会科学、⼯程等领域⾥的⼤多数案例

  • 处理数据⼀般分为⼏个阶段:数据整理与清洗、数据分析与建模、数据可视化与制表,Pandas 是处理数据的理想⼯具

二、Pandas 安装验证

2.1、本地wendows或linux直接pip安装
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

2.2、登入python验证
import pandas as pd ## 没有报错说明pandas安装成功

在这里插入图片描述

三、Pandas 的数据结构

3.1、Series

Series对象用来表示一维数据结构 ,和常规的数组类型,但是Series的内部结构是包含了两个数组

一个是用来保存数据(data),一个是用来保存数据的索引(index)

pandas.Series( data, index, dtype, name, copy)

参数说明:

  • data:一组数据(ndarray 类型)。
  • index:数据索引标签,如果不指定,默认从 0 开始。
  • dtype:数据类型,默认会自己判断。
  • name:设置名称。
  • copy:拷贝数据,默认为 False。
pd.Series(data=['北京','上海','广州','深圳'],index=[1,2,3,4],dtype='str',name='中国一线城市') 

在这里插入图片描述

如果不指定索引(index)会自动从0开始
在这里插入图片描述

3.2、DataFrame
  • DataFrame 是一个二维数组的数据结构,类似Excel、sql表。

  • DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。

pandas.DataFrame( data, index, columns, dtype, copy)

参数说明:

  • data:一组数据(ndarray、series, map, lists, dict 等类型)。
  • index:索引值,或者可以称为行标签。
  • columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
  • dtype:数据类型。
  • copy:拷贝数据,默认为 False。
df1 = pd.DataFrame(data = np.random.randint(0,151,size=(3,3)), #index = ['张三','李四','王五'], # ⾏索引columns= ['python','math','english'])

在这里插入图片描述

四、DataFrame的常用属性

4.1、head()函数

显示头部数据,默认显示头部5行数据

import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0,151,size=(10,3)), columns= ['python','math','english'])
df1.head(7) ##显示前7行数据

在这里插入图片描述

4.2、tail()函数

显示尾部数据,默认显示尾部5行数据

df1.tail(5)

在这里插入图片描述

4.3、shape 函数

显示DataFrame数据结构的行数和列数

df1.shape ## (10, 3)
4.4、dtypes 函数

显示各列的数据类型

df1.dtypes

在这里插入图片描述

4.5、index 函数

显示DataFrame数据的行索引,及索引类型

import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0,151,size=(10,3)), #index=['张三','大华','小明','李四','小丽','小军','王五','木木','明明','小六子'],columns= ['python','math','english'])
df1.index

在这里插入图片描述

4.6、columns 函数

显示DataFrame数据的列索引,及索引类型

df1.columns

在这里插入图片描述

4.7、values 函数

显示DataFrame数据的二维ndarray数组

df1.values

在这里插入图片描述

4.8、describe() 函数

查看数值型列的汇总统计,计数、平均值、标准差、最⼩值、四分位数、最⼤值

df1.describe()

在这里插入图片描述

4.9、info() 函数

查看列索引、数据类型、⾮空计数和内存信息

df1.info()

在这里插入图片描述

五、Pandas 数据输入与输出

5.1、操作csv文件
5.1.1、写入csv文件
import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0,151,size=(10,3)), #index=['张三','大华','小明','李四','小丽','小军','王五','木木','明明','小六子'],columns= ['python','math','english'])df1.to_csv('./score.csv',sep = ',', # ⽂本分隔符,默认是逗号header = True,# 是否保存列索引index = True, # 是否保存⾏索引,保存⾏索引,⽂件被加载时,默认⾏索引会作为⼀列index_label= '姓名')  # 设置index列的名称

在这里插入图片描述

5.1.2、读取csv文件
import numpy as np
import pandas as pd
pd.read_csv('./score.csv',sep = ',',# 默认是逗号header = [0],#指定列索引index_col=0) # 指定⾏索引pd.read_table('./score.csv', # 和read_csv类似,读取限定分隔符的⽂本⽂件sep = ',',header = [0],#指定列索引index_col=0) # 指定⾏索引

在这里插入图片描述

5.2、操作Excel文件
5.2.1、下载Excel的包
pip install xlrd -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install xlwt -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

5.2.2、写入Excel文件
import numpy as np
import pandas as pd
import xlrd
df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况columns=['IT','化⼯','⽣物','教师','⼠兵'])
# 保存到当前路径下,⽂件命名是:salary.xls
df1.to_excel('./salary.xls',sheet_name = 'salary',# Excel中sheet⼯作表的名字header = True,# 是否保存列索引index = True,# 是否保存⾏索引index_label= '编号' # 设置index列的名称)

在这里插入图片描述

5.2.3、⼀个Excel⽂件中保存多个⼯作表
import numpy as np
import pandas as pd
import xlrd
import xlwt
import openpyxl
df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况columns=['IT','化⼯','⽣物','教师','⼠兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考试成绩columns=['Python','Tensorflow','Keras'])# ⼀个Excel⽂件中保存多个⼯作表
with pd.ExcelWriter('./data.xls') as writer:df1.to_excel(writer,sheet_name='salary',index = False)df2.to_excel(writer,sheet_name='score',index = False)

在这里插入图片描述

5.2.4、读取Excel文件
import numpy as np
import pandas as pd
import xlwtpd.read_excel('./salary.xls',sheet_name=0,# 读取哪⼀个Excel中⼯作表,默认第⼀个header = 0,# 使⽤第⼀⾏数据作为列索引index_col=0)# 指定⾏索引,A作为⾏索引

在这里插入图片描述

pd.read_excel('./data.xls',sheet_name='salary') # 读取Excel中指定名字的⼯作表

在这里插入图片描述

5.3、操作HDF5文件
5.3.1、HDF5简介及安装
  • HDF5是⼀个独特的技术套件,可以管理⾮常⼤和复杂的数据收集。
  • HDF5可以存储不同类型数据的⽂件格式,后缀通常是.h5,它的结构是层次性的。
  • HDF5⽂件可以被看作是⼀个组包含了各类不同的数据集
pip install tables -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

5.3.2、HDF5架构

对于HDF5⽂件中的数据存储,有两个核⼼概念:group 和 dataset

dataset :代表数据集,⼀个⽂件当中可以存放不同种类的数据集,

group:最直观的理解,可以参考我们的⽂件管理系统,不同的⽂件位于不同的⽬录下,⽬录就是HDF5中的group

在这里插入图片描述

5.3.2、写入HDF5文件
import numpy as np
import pandas as pddf1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况columns=['IT','化⼯','⽣物','教师','⼠兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考试成绩
columns=['Python','Tensorflow','Keras'])
# 保存到当前路径下,⽂件命名是:data.h5
df1.to_hdf('./data.h5',key='salary') # 保存数据的key,标记
df2.to_hdf('./data.h5',key = 'score')

.h5文件没法直接打开,打开全都乱码了,但是还是看到有HDF的标识

在这里插入图片描述

5.3.3、读取HDF5文件
pd.read_hdf('./data.h5',key='score')

在这里插入图片描述

http://www.khdw.cn/news/53626.html

相关文章:

  • 济南建设网站公司今日国际新闻
  • 网站做浏览器兼容宁波seo快速优化公司
  • vs2017可以做网站吗想学编程去哪里找培训班
  • 网站程序设计外包优化网站
  • 什么服装网站做一件代发广州新一期lpr
  • wordpress自定义右键seo优化多少钱
  • 怎么做写真网站武汉网站开发公司seo
  • html5做的网站有哪些大数据营销
  • 一台ip做两个网站搜索引擎营销的成功案例
  • 网站字体效果什么网站可以免费发广告
  • html企业整站模板网站山东百搜科技有限公司
  • 做书的网站有哪些百度信息流投放技巧
  • 邢台建设企业网站费用广安seo外包
  • win7本地做网站网络公关公司
  • 深圳市做网站前十强合肥网络优化公司有几家
  • 外汇网站怎么做优化百度广告怎么做
  • 网页制作公司武汉重庆seo推广服务
  • 纸牌网站建设新媒体口碑营销案例
  • 潍坊400建网站公司哈尔滨网络优化公司有哪些
  • 专业做网站app真假贵州seo技术查询
  • 网站上做树状框架图用什么软件网络营销项目
  • 药企网站怎么做上海sem
  • 如何建设网站济南兴田德润简介电话百度搜索app下载
  • html网站支付链接怎么做的seo推广软件排行榜前十名
  • 做网站设计工资多少钱网站推广的概念
  • 天将建设集团有限公司网站网络营销推广难做吗
  • 做建材的网站好名字seo在线短视频发布页
  • 国外网站做推广免费涨粉工具
  • 备案的网站有什么好处谷歌怎么投放广告
  • 怎么制作网站后台网络seo关键词优化技术