当前位置: 首页 > news >正文

问卷调查网站JAVA怎么做哪里搜索引擎优化好

问卷调查网站JAVA怎么做,哪里搜索引擎优化好,做网站之前需要准备什么,网站建设与规划策划书环境搭建参考: 深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客 由于本文作者水平有限,如有写得不对的地方,往指出 声明变量:tf.Variable 声明常量:tf.constant 下面通过代码的方式进行学…

环境搭建参考:

深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客

由于本文作者水平有限,如有写得不对的地方,往指出

声明变量:tf.Variable

声明常量:tf.constant

下面通过代码的方式进行学习

一  数据类型学习

1.1  数据类型输出及运算(包括变量及常量的声明及操作)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");ResourceVariable floatVar = tf.Variable<float>(1.2f, name: "float变量");//字符串的值不能出现中文,不然会报错ResourceVariable strVar = tf.Variable<string>("Hello World", name: "字符串变量");ResourceVariable boolVar = tf.Variable<bool>(false, name: "bool变量");Tensor number1 = tf.constant(2,name:"常量2名称");Tensor number2 = tf.constant(3,name:"常量2名称");Tensor addResult = tf.add(number1, number2);Tensor addResult2= tf.add(intVar, number1);Tensor addResult3 = tf.add(intVar.numpy(), number1);    //int类型和int类型相加正常//Tensor addResult4 = tf.add(floatVar, number1);  float类型和int类型相加会报错Console.WriteLine("intVar数值为:" + intVar.numpy()+ " 变量名为:"+intVar.Name);Console.WriteLine("floatVar数值为:" + floatVar.numpy() + " 变量名为:" + floatVar.Name);Console.WriteLine("strVar数值为:" + strVar.numpy() + " 变量名为:" + strVar.Name);Console.WriteLine("boolVar数值为:" + boolVar.numpy() + " 变量名为:" + boolVar.Name);Console.WriteLine("addResult数值为:" + addResult.numpy());Console.WriteLine("addResult2数值为:" + addResult2.numpy());Console.WriteLine("addResult3数值为:" + addResult3.numpy());Console.Read();}}
}

通过tf.Variable<int>(10, name: "int变量")声明了一个值为10,名为'int变量'的整形变量

通过tf.Variable<string>("Hello World", name: "字符串变量")声明了一个值为Hello World,名为'字符串变量'的字符串变量,注意字符串的值不能出现中文,不然会报错

其它的数据类型的声明方式类似

通过tf.constant(2,name:"常量2名称")声明了一个值为2,名为'常量2名称'的整型常量

注意:tf.add相加函数,对应的两个参数的数据类型必须要保持一致,不然会报错。

如:tf.add(number1, number2)是对number1和number2的值相加,可以相加,都是int类型

       tf.add(floatVar, number1)不能相加,因为floatVar是float类型,而number2是int类型

程序运行的结果如下图:

1.2  数据类型输入

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");ResourceVariable floatVar = tf.Variable<float>(1.2f, name: "float变量");//字符串的值不能出现中文,不然会报错ResourceVariable strVar = tf.Variable<string>("Hello World", name: "字符串变量");ResourceVariable boolVar = tf.Variable<bool>(false, name: "bool变量");Tensor number1 = tf.constant(2,name:"常量2名称");Tensor number2 = tf.constant(3,name:"常量2名称");Tensor addResult = tf.add(number1, number2);Tensor addResult2= tf.add(intVar, number1);Tensor addResult3 = tf.add(intVar.numpy(), number1);    //int类型和int类型相加正常//Tensor addResult4 = tf.add(floatVar, number1);  float类型和int类型相加会报错Console.WriteLine("intVar的数据类型为:" + intVar.dtype);Console.WriteLine("floatVar的数据类型为:" + floatVar.dtype);Console.WriteLine("strVar的数据类型为:" + strVar.dtype);Console.WriteLine("boolVar的数据类型为:" + boolVar.dtype);Console.WriteLine("addResult的数据类型为:" + addResult.dtype);//当然也可以使用print进行输出print("使用print函数输出intVar数值为:" + intVar.numpy() + " 变量名为:" + intVar.Name);Console.Read();}}
}

变量或者标量的dtype属性标识该变量或者标量的数据类型

程序运行结果如下:

1.3  声明二维数组变量

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){//使用变量声明一维数组,2行4列的一维数组ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });Console.WriteLine("二维数组输出为:" + array.numpy());Console.WriteLine("二维数组的数据类型为:" + array.dtype);Console.Read();}}
}

代码中声明了一个2行4列的二维数组

代码运行结果如下:

1.4  形状输出

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");Tensor number1 = tf.constant(2, name: "常量2名称");Tensor number2 = tf.constant(3, name: "常量2名称");Tensor addResult = tf.add(number1, number2);//使用变量声明一维数组,2行4列的二维数组ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });//shape输出Console.WriteLine("intVar的shape输出:" + intVar.shape);Console.WriteLine("addResult的shape输出:" + intVar.shape);Console.WriteLine("二维数据的shape为:" + array.shape);Console.Read();}}
}

输出结果如下:

二   张量

TensorFlow中数据的基本单位为张量,前面例子中我们操作的变量或者常量都是属于张量的一种,我们可以使用张量表示标量(0维度数组)、向量(1维数组)、矩阵(2维数组)、RBG图像(3维数组)、视频(4维数组,多了时间维度)等n维数组

2.1  各个维度的张量表示方式

2.1.1  标量(0维数组)的张量表示如下:

ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");
Tensor number1 = tf.constant(2, name: "常量2名称");

2.1.2 向量(1维的数组)的张量表示如下:

ResourceVariable var1 = tf.Variable(new[]{1,2,3});
Tensor var2 = tf.constant(new[] { 2,3,4 });

2.1.3  矩阵(2维数组)的张量表示如下:

ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });

2.1.4  RGB图像(3维数组)的张量表示如下:

ResourceVariable array1 = tf.Variable(new[,,] { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } } , {{ 11, 22, 33, 4 }, { 55, 66, 77, 88 } } });

4维度的就偷个懒,就不写了,类似

2.2  可以通过张量的shape属性获取张量形状、dtype属性获取张量数据类型,方法numpy获取张量的值,代码例子如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar0 = tf.Variable<int>(10, name: "int变量");ResourceVariable array1 = tf.Variable(new[] { 1, 2, 3, 4 });//使用变量声明一维数组,2行4列的二维数组ResourceVariable array2 = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });ResourceVariable array3 = tf.Variable(new[,,] { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } } , {{ 11, 22, 33, 4 }, { 55, 66, 77, 88 } } });Console.WriteLine("0维张量的形状为:"+ intVar0.shape+"  数据类型为:"+ intVar0.dtype+" 值为:"+ intVar0.numpy());Console.WriteLine("1维张量的形状为:" + array1.shape + "  数据类型为:" + array1.dtype + " 值为:" + array1.numpy());Console.WriteLine("2维张量的形状为:" + array2.shape + "  数据类型为:" + array2.dtype + " 值为:" + array2.numpy());Console.WriteLine("3维张量的形状为:" + array3.shape + "  数据类型为:" + array3.dtype + " 值为:" + array3.numpy());Console.Read();}}
}

运行结果如下:

好了,本文内容到此结束

http://www.khdw.cn/news/53093.html

相关文章:

  • wordpress 插件全部消失英语seo什么意思
  • 深圳外贸网站建设服务商网站推广方式
  • 电子业网站建设找seo外包公司需要注意什么
  • 上海地铁美女卖身求财称为支援商业网站建设搜索引擎费用
  • 南宁网站建设速成培训足球排名最新排名世界
  • 青海建设厅网站网站优化就是搜索引擎优化
  • ubuntu怎么打开wordpress广州网站营销优化qq
  • 建网站做哪方面网络营销课程学什么
  • 网站开发程序百度新闻头条新闻
  • 开发网站开奖类游戏需要什么技术自己如何开网站
  • 电子商务网站建设与设计seo优化一般包括哪些内容
  • 企业网站建设智恒网络免费网站模板
  • 网站建设捌金手指下拉二八武汉关键词seo排名
  • 电商网站建设好么新网域名
  • 百度收录最好的网站qianhu微建站
  • 湘西州建设银行网站百度图片搜索网页版
  • 在线平面设计作图网站长沙网站优化排名推广
  • 东莞做网站哪家好引流推广平台软件
  • 衢州网站设计方案营销推广的主要方式
  • 怎么用ftpxp做网站竞价推广托管公司价格
  • 网站建设规划ppt360广告投放平台
  • 地方门户网站有哪些今日国内新闻头条大事
  • 开发一个网站一般需要多少钱宣传推广网络推广
  • wordpress如何添加网站地图口碑营销怎么做
  • 做网站为什么要做备案接入墨猴seo排名公司
  • 网站和webapp的区别域名比价网
  • wordpress短链识别seo自动优化软件下载
  • 宁波品牌网站建设微博推广效果怎么样
  • 神州网站制作搜索引擎有哪些?
  • 用 asp net 做 的网站网站seo的内容是什么