当前位置: 首页 > news >正文

做下载网站赚钱吗建站seo是什么

做下载网站赚钱吗,建站seo是什么,外国人做那个视频网站吗,甘肃疫情最新紧急通告接收者操作特征曲线(ROC)是二元分类器的另一个常用工具。它与精确度/召回率曲线非常相似,但 ROC 曲线不是绘制精确度与召回率的关系曲线,而是绘制真阳性率(召回率的另一个名称)与假阳性率(FPR&a…

接收者操作特征曲线(ROC)是二元分类器的另一个常用工具。它与精确度/召回率曲线非常相似,但 ROC 曲线不是绘制精确度与召回率的关系曲线,而是绘制真阳性率(召回率的另一个名称)与假阳性率(FPR)的关系曲线。FPR(也称 “下降率”)是阴性实例被错误归类为阳性实例的比率。它等于 1 - 真阴性率 (TNR),即正确分类为阴性的阴性实例的比率。TNR 也称为特异性。因此,ROC 曲线是灵敏度(召回率)与 1 - 特异性的关系图

要绘制 ROC 曲线,首先要使用 roc_curve()函数计算不同阈值的 TPRFPR

from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) 

然后可以使用Matplotlib绘制FPRTPR 的对比图。下面的代码可以绘制出 见下图 所示的图形。要找到与 90% 精度相对应的点,我们需要查找所需阈值的索引。由于在这种情况下阈值是按递减顺序排列的,因此我们在第一行使用 <= 而不是 >=

idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax() tpr_90, fpr_90 = tpr[idx_for_threshold_at_90], fpr[idx_for_threshold_at_90]plt.plot(fpr, tpr, linewidth=2, label="ROC curve") 
plt.plot([0, 1], [0, 1], 'k:', label="Random classifier's ROC curve") plt.plot([fpr_90], [tpr_90], "ko", label="Threshold for 90% precision") [...]  # beautify the figure: add labels, grid, legend, arrow, and text plt.show()

在这里插入图片描述

这也是一种权衡:召回率(TPR)越高,分类器产生的误报(FPR)就越多。虚线表示纯随机分类器的 ROC 曲线;好的分类器会尽可能远离这条曲线(左上角)。

比较分类器的一种方法是测量曲线下面积(AUC)。完美分类器的 ROC AUC 等于 1,而纯粹随机分类器的 ROC AUC 等于 0.5。Scikit-Learn 提供了一个估算 ROC AUC 的函数:

在这里插入图片描述

由于 ROC 曲线与精确度/召回(PR)曲线非常相似,您可能会想知道如何决定使用哪种曲线。根据经验,如果阳性类别很少,或者您更关心假阳性而不是假阴性,那么您应该首选 PR 曲线。否则,请使用 ROC 曲线。例如,看了前面的 ROC 曲线(和 ROC AUC 分数),你可能会认为分类器真的很不错。但这主要是因为阳性(5 分)与阴性(非 5 分)相比很少。相比之下,PR 曲线清楚地表明分类器还有改进的余地:曲线确实可以更靠近右上角。

现在,让我们创建一个 RandomForestClassifier,将其 PR 曲线和 F1 分数与 SGDClassifier进行比较:

from sklearn.ensemble import RandomForestClassifierforest_clf = RandomForestClassifier(random_state=42) 

precision_recall_curve() 函数需要每个实例的标签和分数,因此我们需要训练随机森林分类器,让它为每个实例分配分数。但由于 RandomForestClassifier类的工作方式,它没有 decision_function() 方法。幸运的是,它有一个 predict_proba()方法,可以返回每个实例的类概率,我们可以直接使用正类的概率作为得分,这样就可以正常工作了。我们可以调用 cross_val_predict() 函数,使用交叉验证训练随机森林分类器,并让它预测每张图片的类概率,如下所示:

y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,                                    method="predict_proba") 

让我们来看看训练集中前两幅图像的类别概率:

在这里插入图片描述

模型预测第一幅图像为正像的概率为 89%,预测第二幅图像为负像的概率为 99%。由于每幅图像要么是正像,要么是负像,因此每一行的概率相加等于 100%。

这些是估计概率,而不是实际概率。例如,如果您查看所有被模型归类为阳性的图像,估计概率在 50%-60%之间,那么其中大约 94% 的图像实际上是阳性的。因此,在这种情况下,模型的估计概率太低了,但模型也可能过于自信。sklearn.calibration软件包包含校准估计概率的工具,可使其更接近实际概率。

第二列包含正分类的估计概率,我们将其传递给 precision_recall_curve() 函数:

y_scores_forest = y_probas_forest[:, 1] precisions_forest, recalls_forest, thresholds_forest = precision_recall_curve(    y_train_5, y_scores_forest) 

现在我们可以绘制 PR 曲线了。同时绘制第一条 PR 曲线,以了解两者之间的比较(见下图)

plt.plot(recalls_forest, precisions_forest, "b-", linewidth=2,         label="Random Forest") plt.plot(recalls, precisions, "--", linewidth=2, label="SGD") [...]  # beautify the figure: add labels, grid, and legend plt.show()

在这里插入图片描述

如图所示,RandomForestClassifier 的 PR 曲线比 SGDClassifier 好看得多:更接近右上角。其 F1 分数和 ROC AUC 分数也明显更好:

在这里插入图片描述

试着测量一下精确度和召回率:你会发现精确度约为 99.1%,召回率约为 86.6%。还不错!

现在,您已经知道如何训练二元分类器、为任务选择合适的指标、使用交叉验证评估分类器、选择适合您需要的精确度/召回率权衡,以及使用多种指标和曲线来比较各种模型。您已经准备好尝试检测更多信息,而不仅仅是 “5”。

http://www.khdw.cn/news/5100.html

相关文章:

  • 番禺外贸型网站建设seo技术分享博客
  • 做网站必须有框架是吗全网推广公司
  • 文化网站前置审批手机百度下载免费安装
  • 关键词网站排名软件长沙seo结算
  • 商城 网站 功能优化大师下载安装app
  • dw 做网站图片之间的链接百度推广怎么提高关键词排名
  • 多语言网站如何开发网站管理和维护的主要工作有哪些
  • 网站优化建设绵阳重庆seo教程搜索引擎优化
  • 电商网站设计系列百度爱采购官网首页
  • 互联网技术的作用免费seo网站推广
  • 网页qq邮箱登录成都网站排名优化公司
  • 公司做网站能抵扣进项税吗班级优化大师官网
  • 交三百能在网站上找兼职做的关键词智能优化排名
  • 网站后台管理系统论文优化网络推广外包
  • 做影视网站怎么样不犯法关键词是怎么排名的
  • 私人让做彩票网站吗国外独立站网站
  • 怎样才能创建网站网站运营专员
  • 情人做网站seo关键词工具
  • 电子商务网站建设评价seo服务公司上海
  • 做网站有兼职的吗网络推广视频
  • 站长工具5118sem和seo是什么职业岗位
  • 公司企业做网站违法吗爱站关键词挖掘软件
  • 手机源码网aso排名优化知识
  • wordpress 菜单编辑百度seo关键词排名优化教程
  • 做 直销网站 公司百度在线咨询
  • 禹州做网站bz3399百度信息流
  • 北京做网站源代码的广州seo优化外包服务
  • 如何利用站群做网站网站数据查询
  • 鞍山网站深圳seo顾问
  • 博彩网站做代理郑州seo哪家专业