当前位置: 首页 > news >正文

网站开发提问十大推广app平台

网站开发提问,十大推广app平台,网站链接分析,金寨县建设局网站Pandas库 基本概念读取数据数据处理数据输出其他常用功能 pip install pandas基本概念 数据结构 Series: 一维数据结构 import pandas as pd data pd.Series([10, 20, 30, 40], index[a, b, c, d]) print(data)DataFrame: 二维数据结构 data {Name: [Alice, Bob, Charlie],Ag…

Pandas库

      • 基本概念
      • 读取数据
      • 数据处理
      • 数据输出
      • 其他常用功能

pip install pandas

基本概念

  1. 数据结构

    • Series: 一维数据结构

      import pandas as pd
      data = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
      print(data)
      
    • DataFrame: 二维数据结构

      data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]
      }
      df = pd.DataFrame(data)
      print(df)
      

读取数据

  1. 从 CSV 文件读取数据

    df = pd.read_csv('file.csv')
    print(df.head())
    
  2. 从 Excel 文件读取数据

    df = pd.read_excel('file.xlsx', sheet_name='Sheet1')
    print(df.head())
    
  3. 从 SQL 查询读取数据

    import sqlite3
    conn = sqlite3.connect('database.db')
    df = pd.read_sql_query('SELECT * FROM table', conn)
    print(df.head())
    

数据处理

  1. 查看数据

    • 查看前 5 行

      print(df.head())
      
    • 查看后 5 行

      print(df.tail())
      
    • 查看数据的简要信息

      print(df.info())
      
    • 查看数据的统计摘要

      print(df.describe())
      
  2. 选择和过滤数据

    • 按列选择

      print(df['Name'])
      
    • 按行选择

      print(df.loc[0])  # 按标签
      print(df.iloc[0])  # 按位置
      
    • 条件过滤

      filtered_df = df[df['Age'] > 30]
      print(filtered_df)
      
  3. 数据清洗

    • 处理缺失值

      df = df.dropna()  # 删除含缺失值的行
      df = df.fillna(0)  # 将缺失值填充为 0
      
    • 去重

      df = df.drop_duplicates()
      
    • 数据类型转换

      df['Age'] = df['Age'].astype(float)
      
  4. 数据操作

    • 添加列

      df['Country'] = 'USA'
      
    • 删除列

      df = df.drop('Country', axis=1)
      
    • 重命名列

      df = df.rename(columns={'Name': 'Full Name'})
      
  5. 数据聚合

    • 按组聚合

      grouped_df = df.groupby('Country').agg({'Age': 'mean'})
      print(grouped_df)
      
    • 合并数据

      df1 = pd.DataFrame({'ID': [1, 2], 'Value': ['A', 'B']})
      df2 = pd.DataFrame({'ID': [1, 2], 'Score': [85, 90]})
      merged_df = pd.merge(df1, df2, on='ID')
      print(merged_df)
      
    • 拼接数据

      df1 = pd.DataFrame({'Name': ['Alice', 'Bob']})
      df2 = pd.DataFrame({'Name': ['Charlie', 'David']})
      concatenated_df = pd.concat([df1, df2], ignore_index=True)
      print(concatenated_df)
      
  6. 数据排序

    • 按列排序

      sorted_df = df.sort_values(by='Age')
      print(sorted_df)
      
    • 排序方向

      sorted_df = df.sort_values(by='Age', ascending=False)
      print(sorted_df)
      

数据输出

  1. 保存为 CSV 文件

    df.to_csv('output.csv', index=False)
    
  2. 保存为 Excel 文件

    df.to_excel('output.xlsx', index=False)
    

其他常用功能

  1. 透视表

    pivot_table = pd.pivot_table(df, values='Age', index='Country', aggfunc='mean')
    print(pivot_table)
    
  2. 时间序列

    • 日期时间转换

      df['Date'] = pd.to_datetime(df['Date'])
      
    • 设置时间索引

      df = df.set_index('Date')
      
http://www.khdw.cn/news/46305.html

相关文章:

  • 国外那些视频网站做的不错网络营销推广方案步骤
  • 营销型网站的建设重点是什么茶叶推广软文
  • 重庆好的网站制作公司泰安网站制作推广
  • 网站首页qq在线咨询js营销培训心得体会
  • 怎么破解wordpress模板关键词优化工具有哪些
  • 百度网站建设北京怎么优化一个网站关键词
  • 网站做排名教程新冠疫情最新消息今天
  • 做网站明细范文济南市最新消息
  • 做演示的网站sem代运营托管公司
  • php做网站后台b站免费建网站
  • 网站建设的主要工作青岛网站制作seo
  • 网站上传为什么大小限制网络推广费用大概价格
  • 杭州网站维护外包百度收录提交网站后多久收录
  • 蚌埠市做家教网站北京疫情消息1小时前
  • 展馆展示设计公司招聘信息广州seo关键词优化是什么
  • 富阳公司做网站千锋培训学费多少钱
  • 顺德门户网站建设公司百度竞价排名点击软件
  • 利用淘宝做网站卖货到国外郑州百度快照优化
  • 武汉汉阳建设局官方网站怎么做盲盒
  • wordpress 描述插件seol英文啥意思
  • 西安响应式网站创意营销
  • 宜州网站建设怀化网站seo
  • 在安阳想建个网站怎么做合肥网站推广优化
  • 深圳外贸英文网站设计联系电话广告类的网站
  • 兰州做网站优化微信最好用的营销软件
  • 最好看的网站设计友情链接方面pr的选择应该优先选择的链接为
  • 做网站钱上海专业seo公司
  • 服装网站怎么做长春seo排名
  • 全国31省疫情排名优化大师网页版
  • 无锡网站建设 网站制作宁夏百度公司