当前位置: 首页 > news >正文

https网站制作重庆seo是什么

https网站制作,重庆seo是什么,设计网站需要什么条件,手游网站怎么做前言 在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的正交性质。 正交多项式的定义…

前言

在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性质。

正交多项式的定义

f n ( x ) , n ∈ N f_n(x),n\in \mathbb N fn(x),nN是定义在 [ a , b ] [a,b] [a,b]上的一列函数,若对于任意的自然数 m , n m,n m,n f m ( x ) f n ( x ) f_m(x)f_n(x) fm(x)fn(x) [ a , b ] [a,b] [a,b]上可积,且满足:
∫ a b f m ( x ) f n ( x ) d x = { 0 , m ≠ n ∫ a b f n 2 ( x ) d x > 0 , m = n \int_{a}^{b}f_m(x)f_n(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle \int_{a}^{b} f^2_n(x)\mathrm{d}x>0, &m=n\end{cases} abfm(x)fn(x)dx= 0,abfn2(x)dx>0,m=nm=n
则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交函数列。当 { f n ( x ) } \{f_n(x)\} {fn(x)} n n n次多项式时,则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交多项式列

n阶Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性证明

n次Legendre多项式的定义如下:
p n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n , n ∈ N p_{n}(x)=\frac{1}{2^n n!}\frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n, n\in \mathbb{N} pn(x)=2nn!1dxndn(x21)n,nN

不妨设 n ≥ m n \geq m nm。首先构造如下函数

I m n = m ! n ! 2 m 2 n ∫ − 1 1 p m ( x ) p n ( x ) d x = ∫ − 1 1 d m d x m ( x 2 − 1 ) m ⋅ d n d x n ( x 2 − 1 ) n d x \begin{equation} I_{mn}=m!n!2^m2^n\int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n \mathrm{d}x \end{equation} Imn=m!n!2m2n11pm(x)pn(x)dx=11dxmdm(x21)mdxndn(x21)ndx

用分部积分法对 ( 1 ) (1) (1)式进行积分,可以得到

I m n = ∫ − 1 1 d m d x m ( x 2 − 1 ) m d ( d n − 1 d x n − 1 ( x 2 − 1 ) n ) = d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} \begin{align} I_{mn} &=\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \mathrm{d}(\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n) \nonumber \\ &=\left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1} \nonumber -\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \nonumber \\ \end{align} \end{equation} Imn=11dxmdm(x21)md(dxn1dn1(x21)n)=dxmdm(x21)mdxn1dn1(x21)n 1111dxn1dn1(x21)ndxm+1dm+1(x21)mdx

这里引用《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章里的结论:

k < n k<n k<n时, f k ( x ) = [ ( x 2 − 1 ) n ] ( k ) f_{k}(x)=[(x^2-1)^n]^{(k)} fk(x)=[(x21)n](k)的每一项都包含因式 x − 1 x-1 x1 x + 1 x+1 x+1

因此 d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 = 0 \displaystyle \left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1}=0 dxmdm(x21)mdxn1dn1(x21)n 11=0。于是 ( 2 ) (2) (2)式可以写成:

I m n = − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} I_{mn}=-\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \end{equation} Imn=11dxn1dn1(x21)ndxm+1dm+1(x21)mdx

继续用分部积分法对 ( 3 ) (3) (3)式重复上述过程,执行 n n n次后,得到

I m n = ( − 1 ) n ∫ − 1 1 d m + n d x m + n ( x 2 − 1 ) m ⋅ ( x 2 − 1 ) n d x \begin{equation} I_{mn}=(-1)^n\int_{-1}^{1} \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m \cdot (x^2-1)^n \mathrm{d}x \end{equation} Imn=(1)n11dxm+ndm+n(x21)m(x21)ndx

下面分情况讨论。

  1. n > m n>m n>m d m + n d x m + n ( x 2 − 1 ) m = 0 \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =0 dxm+ndm+n(x21)m=0,即 I m n = 0 I_{mn}=0 Imn=0,因此有

∫ − 1 1 p m ( x ) p n ( x ) d x = 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =0 \end{equation} 11pm(x)pn(x)dx=0

  1. n = m n=m n=m,根据高阶导数的Leibniz公式可以得到:
    d m + n d x m + n ( x 2 − 1 ) m = ∑ i = 0 2 n C 2 n i [ ( x + 1 ) n ] ( i ) [ ( x − 1 ) n ] ( 2 n − i ) = C 2 n n [ ( x + 1 ) n ] ( n ) [ ( x − 1 ) n ] ( n ) = ( 2 n ) ! \begin{equation} \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =\displaystyle \sum_{i=0}^{2n} C_{2n}^{i}[(x+1)^n]^{(i)}[(x-1)^n]^{(2n-i)}=C_{2n}^{n}[(x+1)^n]^{(n)}[(x-1)^n]^{(n)}=(2n)! \end{equation} dxm+ndm+n(x21)m=i=02nC2ni[(x+1)n](i)[(x1)n](2ni)=C2nn[(x+1)n](n)[(x1)n](n)=(2n)!

( 6 ) (6) (6)式代入 ( 4 ) (4) (4)式,不断使用分部积分法后可以得到

I n n = ( 2 n ) ! ( − 1 ) n ∫ − 1 1 ( x − 1 ) n ( x + 1 ) n d x = ( 2 n ) ! ∫ − 1 1 ( 1 − x ) n d ( ( 1 + x ) n + 1 n + 1 ) = ( 2 n ) ! n + 1 ( 1 − x ) n ( 1 + x ) n + 1 ∣ − 1 1 + ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n ( n − 1 ) ( n + 1 ) ( n + 2 ) ∫ − 1 1 ( 1 − x ) n − 2 ( 1 + x ) n + 2 d x = . . . = ( n ! ) 2 ∫ − 1 1 ( 1 + x ) 2 n d x = ( n ! ) 2 2 2 n + 1 2 n + 1 \begin{equation} \begin{align} I_{nn} &= (2n)!(-1)^n\int_{-1}^{1} (x-1)^n (x+1)^n \mathrm{d}x \nonumber \\ &=(2n)!\int_{-1}^{1}(1-x)^n \mathrm{d}\left(\dfrac{(1+x)^{n+1}} {n+1}\right)\nonumber \\ &=\left.\dfrac{(2n)!}{n+1}(1-x)^n(1+x)^{n+1}\right|_{-1}^{1}+\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n(n-1)}{(n+1)(n+2)}\int_{-1}^{1}(1-x)^{n-2}(1+x)^{n+2}\mathrm{d}x \nonumber \\ &=... \nonumber \\ &=(n!)^2\int_{-1}^{1}(1+x)^{2n}\mathrm{d}x =\dfrac{(n!)^2 2^{2n+1}}{2n+1}\nonumber \\ \end{align} \end{equation} Inn=(2n)!(1)n11(x1)n(x+1)ndx=(2n)!11(1x)nd(n+1(1+x)n+1)=n+1(2n)!(1x)n(1+x)n+1 11+n+1(2n)!n11(1x)n1(1+x)n+1dx=n+1(2n)!n11(1x)n1(1+x)n+1dx=(n+1)(n+2)(2n)!n(n1)11(1x)n2(1+x)n+2dx=...=(n!)211(1+x)2ndx=2n+1(n!)222n+1

( 7 ) (7) (7)式代入 ( 1 ) (1) (1)式,可得

∫ − 1 1 p m ( x ) p n ( x ) d x = I n n ( n ! ) 2 2 n = 2 2 n + 1 > 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\dfrac{I_{nn}}{(n!)2^{2n}}=\dfrac{2}{2n+1}>0 \end{equation} 11pm(x)pn(x)dx=(n!)22nInn=2n+12>0

结合 ( 5 ) , ( 8 ) (5),(8) (5),(8)式,我们得到了如下结论

∫ − 1 1 p m ( x ) p n ( x ) d x = { 0 , m ≠ n 2 2 n + 1 > 0 , m = n \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle\dfrac{2}{2n+1}>0, &m=n\end{cases} 11pm(x)pn(x)dx= 0,2n+12>0,m=nm=n

根据定义,我们得到 n n n次Legendre多项式列 { p n ( x ) } \{p_n(x)\} {pn(x)} [ − 1 , 1 ] [-1,1] [1,1]上的正交多项式列。证毕。

http://www.khdw.cn/news/4553.html

相关文章:

  • 不符合网站外链建设原则的是郑州网站运营
  • 唐山网站建设哪家专业百度贴吧网页版入口
  • 喀什网站制作百度相册登录入口
  • 中国西陆最新军事新闻廊坊seo培训
  • 网站建设问卷调查河南网站公司
  • 做网站开票是多少个点的票seo指的是搜索引擎营销
  • 多用户+wordpress最新seo自动优化软件
  • 淘宝客如何建立自己的网站网络运营需要学什么
  • 网站开发怎么入账北京seo推广外包
  • 江苏建设局网站百度搜索关键词查询
  • 可以做网站AB测的软件长沙百度关键词推广
  • 北京网站制作培训学校seo专业优化方法
  • 手机在线建站优化网站seo方案
  • 广州金融网站设计谷歌搜索引擎营销
  • 西安监控系统网站开发职业培训机构哪家最好
  • 网站推广工作如何做国内最新新闻摘抄
  • 阀门行业网站怎么做广告联盟有哪些平台
  • 关于.net网站开发外文书籍系统优化app最新版
  • 信息化建设网站范本下载百度地图2022最新版官方
  • 17网站一起做网店浙江网站模板免费
  • 郑州承接各类网站建设软服业营收破334亿
  • 提升学历正规渠道湖南靠谱seo优化
  • 新手学做网站相关书籍网络管理系统
  • 德保网站建设营销网站建设服务
  • 个人备案能建立企业网站吗菏泽百度推广公司电话
  • 做网站招微商卖货是真的吗最近五天的新闻大事
  • 权威的大连网站建设电商培训心得
  • 网站如何更换域名东莞网站建设推广公司
  • 杭州电商网站建设网络媒体广告代理
  • 如何做网站推广广告宿迁网站建设制作