当前位置: 首页 > news >正文

网站做访问追踪怎么下载需要会员的网站视频

网站做访问追踪,怎么下载需要会员的网站视频,企业融资计划书范本,成都制作网站大模型实战一、OllamaRagFlow 部署本地知识库 参考你提供的文章,这里是基于 Windows 系统通过 Docker 安装部署 RagFlow 和 Ollama 的本地化大模型知识库的详细教程。本文将指导你如何在 Windows 上使用 Docker 来设置 RagFlow 和 Ollama 环境,并安装通…

大模型实战一、Ollama+RagFlow 部署本地知识库

参考你提供的文章,这里是基于 Windows 系统通过 Docker 安装部署 RagFlow 和 Ollama 的本地化大模型知识库的详细教程。本文将指导你如何在 Windows 上使用 Docker 来设置 RagFlow 和 Ollama 环境,并安装通义千问2 7B大模型和支持中文的 Embedding 模型。

在 Windows 上通过 Docker 安装和部署 RagFlow 和 Ollama

1. 环境准备

确保你的系统满足以下条件:

  • Windows 10 或更高版本
  • Docker Desktop 已安装并启用 WSL 2 后端
1.1 安装 Docker Desktop

如果你还没有安装 Docker Desktop,请按照以下步骤进行安装:

  1. 下载 Docker Desktop:Docker Desktop 官网
  2. 运行安装程序,按照提示完成安装。
  3. 启用 WSL 2 后端:
    • 打开 Docker Desktop,进入 Settings > General,勾选 “Use the WSL 2 based engine”。
    • 确保已安装并启用了 WSL 2。可以参考 微软官方指南 来完成 WSL 2 的安装和启用。
1.2 启动 Docker Desktop

安装完成后,启动 Docker Desktop,确保 Docker 正常运行。可以通过命令行验证 Docker 版本来确认安装成功:

docker --version

2. 安装 RagFlow 和 Ollama

RagFlow 和 Ollama 是用于管理和部署大模型知识库的关键工具。

2.1 拉取 Ollama 镜像

Ollama 是一个专注于大语言模型管理的工具,使用 Docker 容器来运行模型。

  1. 在终端中运行以下命令来拉取 Ollama 镜像:

    docker pull ollama/ollama
    
  2. 运行 Ollama 容器:

    docker run --rm -it --name ollama-cli ollama/ollama:latest
    
2.2 安装 RagFlow

RagFlow 是一个用于构建和管理信息检索生成流的工具。我们可以使用 Docker 容器来安装 RagFlow。

  1. 拉取 RagFlow 镜像:

    docker pull ragflow/ragflow:latest
    
  2. 运行 RagFlow 容器:

    docker run --rm -it --name ragflow-cli ragflow/ragflow:latest
    

3. 安装通义千问2 7B 模型

通义千问2 7B 是一个中文语言模型,可以用于构建本地化知识库。

3.1 下载并安装通义千问2 7B 模型
  1. 使用 Ollama CLI 来下载通义千问2 7B 模型:

    ollama pull tongyi/qwen-7b-chat
    

    这将下载并准备模型以便于后续使用。

3.2 运行模型容器
  1. 使用 Ollama 运行通义千问2 7B 模型:

    docker run --rm -it --name qwen-7b-chat ollama/tongyi-qwen-7b-chat
    

    你可以通过指定模型参数和配置来调整模型的运行行为。

4. 设置支持中文的 Embedding 模型

为了使 RagFlow 能够处理中文文本并进行向量化,我们需要安装一个支持中文的 Embedding 模型,例如 m3e-base

4.1 安装 transformers 和 sentence-transformers 库
  1. 创建一个 Docker 容器来安装和运行 Python 及相关库:

    docker run --rm -it --name embedding-env python:3.8-slim bash
    
  2. 在容器内部安装所需的库:

    pip install transformers sentence-transformers
    
4.2 下载和加载 Embedding 模型

我们可以使用以下 Python 代码来加载 m3e-base 模型:

from sentence_transformers import SentenceTransformer# 加载中文嵌入模型
embedding_model = SentenceTransformer('moka-ai/m3e-base')

你可以将上述代码保存为脚本,并在 Docker 容器中执行它。

5. 整合 RagFlow 和 Ollama,构建本地知识库

现在,我们可以通过 RagFlow 和 Ollama 集成来构建一个本地化知识库系统。

5.1 初始化 RagFlow 项目

在 Docker 容器中初始化一个新的 RagFlow 项目:

docker exec -it ragflow-cli ragflow init my-local-knowledgebase
cd my-local-knowledgebase
5.2 添加中文 Embedding 和模型配置

编辑 config.yml 文件,配置 RagFlow 使用 Ollama 模型和中文嵌入:

embedding:model: "moka-ai/m3e-base"retriever:type: "local"index_path: "./index"model:type: "ollama"model_name: "tongyi/qwen-7b-chat"container_engine: "docker"
5.3 构建知识库索引

将你希望添加到知识库的中文文档或文本进行索引。假设我们有一些中文文档放在 data/ 目录中:

docker exec -it ragflow-cli ragflow index --data-dir ./data
5.4 运行知识库查询服务

使用 RagFlow 启动查询服务:

docker exec -it ragflow-cli ragflow serve

你现在可以通过 REST API 或命令行工具查询本地化的中文知识库。

6. 测试部署

通过命令行或 HTTP 请求测试你的本地化知识库:

curl -X POST http://localhost:8000/query -H "Content-Type: application/json" -d '{"query": "通义千问2的主要功能是什么?"}'

7. 完成部署和调优

根据实际需求进一步调优模型和检索配置,添加更多的自定义功能和业务逻辑。

总结

通过以上步骤,你已经成功在 Windows 系统上通过 Docker 部署了一个本地化的大模型知识库,结合 RagFlow 和 Ollama,安装了通义千问2 7B 模型和中文 Embedding 模型,构建了一个支持中文问答的系统。这种设置适用于企业内部知识管理、自动化客服、智能问答等场景。

http://www.khdw.cn/news/41683.html

相关文章:

  • 网站栏目功能分析seo服务
  • 全栈网站开发工程师全网营销系统
  • 网页设计项目模板代码爱站seo
  • 甘肃网站建设方案优化免费自己建网页
  • 外贸网站建设服务平台关键词列表
  • 客服在家做网站补习班
  • cnc是什么意思长沙靠谱关键词优化公司电话
  • 最专业网站建设哪家好seo刷关键词排名工具
  • 做临时网站武汉电脑培训学校有哪些
  • 网页游戏平台排名前10名廊坊百度关键词优化怎么做
  • 网站网页打开的速度什么决定的相似图片在线查找
  • 做文献的ppt模板下载网站佛山seo优化外包
  • 南通高端网站建设机构网站网络营销公司
  • 专业做网站的公司营销方案怎么写
  • 做淘宝招牌软件网站外贸建站优化
  • 成都网约车平台公司哪家好seo外链自动群发工具
  • 东莞企业制作网站网站制作教程
  • 56物流网企业搜索引擎优化
  • 云南文投建设投资有限公司网站su搜索引擎优化
  • 把织梦改成字段式网站手机网站快速建站
  • 沾化网站建设自助建站申请
  • 无锡工程建设中心网站网站建设优化推广
  • 用什么建设网站百度竞价点击神器
  • app下载做任务赚钱网站深圳全网营销平台排名
  • 微网站 方案深圳网站seo
  • wordpress图片分享插件下载地址优化服务是什么意思
  • 做调查的网站知乎腾讯广告投放推广平台价格
  • 专业的led网站建设宁波seo咨询
  • 游戏代理平台免费seo导航站
  • 沈阳正规制作网站公司哪家好电脑优化用什么软件好