当前位置: 首页 > news >正文

怎样创建公司网站中国500强最新排名

怎样创建公司网站,中国500强最新排名,咸阳做网站费用,福建漳州网站建设价格文章目录 1. 简单线性回归理论2. python通过简单线性回归预测房价2.1 预测数据2.2导入标准库2.3 导入数据2.4 划分数据集2.5 导入线性回归模块2.6 对测试集进行预测2.7 计算均方误差 J2.8 计算参数 w0、w12.9 可视化训练集拟合结果2.10 可视化测试集拟合结果2.11 保存模型2.12 …

文章目录

    • 1. 简单线性回归理论
    • 2. python通过简单线性回归预测房价
      • 2.1 预测数据
      • 2.2导入标准库
      • 2.3 导入数据
      • 2.4 划分数据集
      • 2.5 导入线性回归模块
      • 2.6 对测试集进行预测
      • 2.7 计算均方误差 J
      • 2.8 计算参数 w0、w1
      • 2.9 可视化训练集拟合结果
      • 2.10 可视化测试集拟合结果
      • 2.11 保存模型
      • 2.12 加载模型并预测

在机器学习和统计学中,简单线性回归是一种基础而强大的工具,用于建立自变量与因变量之间的关系。

假设你是一个房产中介,想通过房屋面积来预测房价。简单线性回归可以帮助你找到房屋面积与房价之间的线性关系,进而为客户提供更合理的报价。

本文将带你深入了解简单线性回归的理论基础、公式推导以及如何在Python中实现这一模型。

1. 简单线性回归理论

简单线性回归的基本假设是,因变量 Y(例如房价)与自变量 X(例如人口)之间存在线性关系。我们可以用以下的线性方程来表示这种关系:
在这里插入图片描述

其中:

  • y 是因变量(我们要预测的变量)。

  • x 是自变量(我们用来进行预测的变量)。

  • w0是截距(当x=0) 时,y的值)。

  • w1是斜率(自变量变化一个单位时,因变量的变化量)。

我们的目标是求 w0和w1的值,来找到一条跟预测值相关的直线。

从图中我们可以看出预测值与真实值之间存在误差,那么我们引入机器学习中的一个概念均方误差,它表示的是这些差值的平方和的平均数。这些误差的表达式如下:
在这里插入图片描述

均方误差的表达式如下:
在这里插入图片描述

2. python通过简单线性回归预测房价

2.1 预测数据

数据如下:

polulation,median_house_value
961,3.03
234,0.68
1074,2.92
1547,4.24
805,2.39
597,1.59
784,2.21
498,1.31
1602,4.28
292,0.54
1499,4.18
718,1.95
180,0.43
1202,3.62
1258,3.48
453,1.08
845,2.31
1032,2.96
384,0.68
896,2.62
425,0.82
928,2.95
1324,3.59
1435,4.02
543,1.62
1132,3.34
328,0.76
638,1.54
1389,3.78
692,1.79

x 轴是人口数量,y轴是房价

2.2导入标准库

# 导入标准库
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
matplotlib.use('TkAgg')

2.3 导入数据

# 导入数据集
dataset = pd.read_csv('Data.csv')
x = dataset.iloc[:, :-1]
y = dataset.iloc[:, 1]

2.4 划分数据集

# 数据集划分 训练集/测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

2.5 导入线性回归模块

# 简单线性回归算法
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

2.6 对测试集进行预测

# 对测试集进行预测
y_pred = regressor.predict(X_test)

2.7 计算均方误差 J

# 计算J
J = 1/X_train.shape[0] * np.sum((regressor.predict(X_train) - y_train)**2)
print("J = {}".format(J))

输出结果:

J = 0.031198935319832692

2.8 计算参数 w0、w1

# 计算参数 w0、w1
w0 = regressor.intercept_
w1 = regressor.coef_[0]
print("w0 = {}, w1 = {}".format(w0, w1))

输出结果:

w0 = -0.16411984840092098, w1 = 0.0029383965595942067

2.9 可视化训练集拟合结果

# 可视化训练集拟合结果
plt.figure(1)
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (training set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:
在这里插入图片描述

可以很好的看到拟合的直线可以很好的表示原始数据的人口和房价的走势

2.10 可视化测试集拟合结果

# 可视化测试集拟合结果
plt.figure(2)
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (test set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:
在这里插入图片描述

可以看到,拟合的直线在测试集上的表现是相当不错了,说明我们训练的线性模型有很好的应用效果。

2.11 保存模型

# 保存模型
import pickle
with open('../model/simple_house_price_model.pkl','wb') as file:pickle.dump(regressor,file);

2.12 加载模型并预测

import pickle
import numpy as np
import pandas as pd
# 加载模型并预测
with open('../model/simple_house_price_model.pkl','rb') as file:model = pickle.load(file)x_test = np.array([693,694])
x_test = pd.DataFrame(x_test)
x_test.columns=['polulation']
y_pred = model.predict(x_test)
print(y_pred)

输出结果:

[1.87218897 1.87512736]
http://www.khdw.cn/news/41613.html

相关文章:

  • 达州北京网站建设成品网站源码在线看
  • 中国有什么网站做跨境零售郑州seo代理公司
  • 外贸公司网站推广关键词批量调词 软件
  • 西安网站开发的空间百度指数批量查询工具
  • 网站目录结构图线上运营推广方案
  • 阿里云做视频网站犯法吗网站品牌推广策略
  • 唐山医疗网站建设产品销售推广方案
  • 做百度网站每年的费用多少合适大连网站排名推广
  • 秦皇岛哪里做网站企业微信管理系统
  • 招商加盟网站开发关键词你们都搜什么
  • 网站开发软件h开头的河南网站优化排名
  • wordpress外贸网站好用的模板下载最近国际时事热点事件
  • .net 网站生成安装文件目录外链发布平台有哪些
  • 专做恐怖片的网站重庆关键词排名推广
  • 旅游网站建设前的市场分析浙江seo外包费用
  • 用现成的网站模板只套内容就可以有这样的吗浏览器网址
  • 做pcb网站的公司微软bing搜索引擎
  • 外贸b2b网站用什么网站程序做网络小说网站三巨头
  • c++网站开发网站免费推广平台
  • 河北邢台解封了吗seo外链发布软件
  • 商城网站建设网络公司百度搜索官方网站
  • 网站开发软件环境如何快速推广网上国网
  • 网站建设的公司合肥网址导航该如何推广
  • 可以用足球做的游戏视频网站网络教学平台
  • 页面设计合同seo的外链平台有哪些
  • 北京想象力网站建设seo优化就业前景
  • 免费建站自助建站百度官网优化
  • 男人和女人做性网站西安百度竞价托管公司
  • 网站关键词可以添加吗上海百度推广公司
  • 做网站开发的步骤网络营销毕业论文范文