当前位置: 首页 > news >正文

海外主机做黄色网站优化大师免费下载

海外主机做黄色网站,优化大师免费下载,标书制作员这工作好吗,购物网站制作实例Lucene 9.10 中的 KnnFloatVectorQuery 是用来执行最近邻(k-Nearest Neighbors,kNN)搜索的查询类,它可以在一个字段中搜索与目标向量最相似的k个向量。以下是 KnnFloatVectorQuery 的基本用法和代码示例。 1. 索引向量字段 首先…

Lucene 9.10 中的 KnnFloatVectorQuery 是用来执行最近邻(k-Nearest Neighbors,kNN)搜索的查询类,它可以在一个字段中搜索与目标向量最相似的k个向量。以下是 KnnFloatVectorQuery 的基本用法和代码示例。

1. 索引向量字段

首先,你需要一个包含向量字段的索引。你可以使用 KnnFloatVectorField 来添加向量到文档中。

import org.apache.lucene.document.Document;
import org.apache.lucene.document.KnnFloatVectorField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.FSDirectory;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;public class VectorIndexing {public static void main(String[] args) throws IOException {List<Document> docs = new ArrayList<>();String fieldName = "knnFloatField";IndexWriter writer = new IndexWriter(FSDirectory.open(/* ... */), new IndexWriterConfig());for (float[] vector : /* ... */) {Document doc = new Document();doc.add(new KnnFloatVectorField(fieldName, vector, VectorSimilarityFunction.EUCLIDEAN));docs.add(doc);// ... 其他字段的添加 ...writer.addDocument(doc);}writer.close();}
}

2. 执行 kNN 查询

接下来,使用 KnnFloatVectorQuery 来执行查询。你需要指定查询的字段、目标向量以及想要检索的最近邻个数 k。

import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.KnnFloatVectorQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.DirectoryReader;public class VectorSearch {public static void main(String[] args) throws IOException {try (DirectoryReader reader = DirectoryReader.open(/* ... */)) {IndexSearcher searcher = new IndexSearcher(reader);float[] targetVector = { /* ... */ }; // 目标向量int k = 3; // 想要检索的最近邻个数KnnFloatVectorQuery knnQuery = new KnnFloatVectorQuery("knnFloatField", targetVector, k);TopDocs topDocs = searcher.search(knnQuery, 10);for (ScoreDoc scoreDoc : topDocs.scoreDocs) {// 处理检索到的文档}}}
}

3. 结果处理

TopDocs 对象包含了按分数排序的文档列表,其中分数是基于向量相似度计算的。你可以根据需要遍历这些文档。

请注意,KnnFloatVectorQuery 是基于 KnnVectorsReader 的,它使用特定的算法(如 HNSW)来执行高效的向量最近邻搜索。查询时,相似度的计算由字段定义的 VectorSimilarityFunction 决定,例如欧几里得距离(Euclidean distance)。

在实际应用中,你可能还需要考虑如何存储和检索其他相关的文档信息,以及如何处理查询结果以满足你的业务需求。此外,向量字段的索引和搜索可能需要特定的索引配置和优化,以确保性能和准确性。

以上示例代码提供了在 Lucene 9.10 中使用 KnnFloatVectorQuery 进行向量检索的基本框架。具体的实现细节(如索引的创建、字段的配置等)需要根据你的具体应用场景进行调整。

VectorSimilarityFunction 下枚举值解释:

VectorSimilarityFunction 是 Lucene 中用于定义向量相似度计算方法的枚举类型。它提供了几种不同的函数,用于在执行向量搜索时比较向量的相似度。以下是 VectorSimilarityFunction 的一些枚举值及其解释:

  1. EUCLIDEAN: 使用欧几里得距离来衡量向量之间的相似度。这是一种常见的距离度量,用于计算两点之间的直线距离。在 Lucene 中,它用于计算查询向量与索引中向量之间的距离。

  2. COSINE: 使用余弦相似度来衡量向量之间的相似度。余弦相似度测量的是两个向量在方向上的相似性,而不是大小。它通过计算两个向量的点积与它们模的乘积的比值来得到。

  3. DOT_PRODUCT: 点积相似度,与余弦相似度类似,它计算两个向量的点积,但不需要归一化向量。点积相似度对向量的长度敏感,因此在比较之前通常需要将向量标准化到单位长度。

  4. MANHATTAN: 使用曼哈顿距离(也称为城市街区距离)来衡量向量之间的相似度。这种距离度量是各个维度上差的绝对值之和。

  5. HAMMING: 汉明相似度,通常用于二进制向量,它计算两个向量中不同位置的个数。

  6. JACCARD: 杰卡德相似度,用于衡量集合之间的相似度,它定义为两个集合交集大小与并集大小之比。

  7. CHEBYCHEV: 切比雪夫距离,它是向量中对应元素差的绝对值的最大值。

  8. CANBERRA: 坎培拉距离,是一种加权的曼哈顿距离,它考虑了两个元素值的差的绝对值与它们值的和的比率。

  9. BRAY_CURTIS: 布雷-柯蒂斯相似度,它是基于两个向量交集和并集的大小,类似于杰卡德相似度,但权重不同。

  10. ROGERSTANIMOTO: 罗杰斯-谭马托相似度,它是一种基于向量元素差的绝对值的相似度度量。

  11. RUSSELLRAO: 罗素-劳相似度,它是基于两个集合交集大小与各自独有元素大小之和的度量。

  12. SOKALSNEATH: 索卡尔-斯内思相似度,它结合了汉明距离和杰卡德相似度的特点。

这些相似度函数可以用于不同的场景,选择哪一种取决于你的具体需求以及数据的特性。例如,如果你关心的是向量的方向而不是大小,那么余弦相似度可能是一个好选择;如果你关心的是向量间的实际距离,欧几里得距离可能更合适。

http://www.khdw.cn/news/38550.html

相关文章:

  • 网站强制分享链接怎么做的电脑优化是什么意思
  • 网站后台中表格制作免费引流推广工具
  • 企业网站优化应该怎么做企业网站设计优化公司
  • 联合创始人网站怎么做哪个公司网站设计好
  • 建设网站是什么河南企业站seo
  • 做公司网站 哪个程序用的多苏州seo关键词优化外包
  • 怎么提高网站收录刷推广链接人数的软件
  • 爱站网是什么意思seo优化专员招聘
  • wordpress orderby 置顶seo自动优化软件下载
  • 生成拼贴的网站网站seo诊断优化方案
  • 英国网站域名中央突然宣布一个大消息
  • 制作网站建设的广告有限公司
  • 用手机制作动画的app汕头seo托管
  • 网站建设的专业知识精准营销平台
  • 头条网站收录提交入口企业网络营销策划案
  • 设计教学网站推荐seo诊断优化专家
  • 做网站服务器有哪些seo广告投放是什么意思
  • 怎么做会员自动售卡网站湖南平台网站建设制作
  • pc端网站开发工具百度推送
  • 服务网站万网域名购买
  • 天津武清做网站百度24小时人工客服电话
  • 免费软件app下载大全seo营销怎么做
  • 日本真人做爰视频免费网站企业网站建设cms
  • 做的最好的政府部门网站关键词难易度分析
  • 如何做网站客户端精准营销的概念
  • WordPress漫画网沧州网站seo
  • 图片设计制作软件国内seo公司排名
  • 南阳做网站aokuo腾讯域名注册官网
  • wordpress循环所有文脏优化技术基础
  • wordpress刷评论沈阳专业网站seo推广