当前位置: 首页 > news >正文

网站描述更改比较成功的网络营销案例

网站描述更改,比较成功的网络营销案例,建设网站的相关费用,青岛比较知名的网站建设公司一、推导题 二、计算题 1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型: 广告费用(万元)x 2 5 6 7 22 25 28 30 22 18 销售量(个&#xf…

一、推导题

二、计算题

1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型:

广告费用(万元)x

2

5

6

7

22

25

28

30

22

18

销售量(个)    y

75

90

148

183

242

263

278

318

256

200

解:

(1)绘制的散点图和回归线如下图所示:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号#数据
data=np.array([[2,5,6,7,22,25,28,30,22,18],[75, 90,148,183,242,263,278,318,256,200]])x=data[0]
y=data[1]
plt.scatter(x, y,  c='r',marker='o',label='销售量') #散点图
linreg = LinearRegression()#线性回归
linreg.fit(x.reshape(-1,1),y) #拟合,x要转换为列向量
y_pre=linreg.predict(x.reshape(-1,1))
plt.plot(x,y_pre,c='b') #回归线
s='y='
for i in range(len(linreg.coef_)):if(linreg.coef_[i]>=0 and i>0):s=s+'+'+str(round(linreg.coef_[i],3))+'x'+str(i)else:s=s+str(round(linreg.coef_[i],3))+'x'+str(i)
if(linreg.intercept_>=0):s=s+'+'+str(round(linreg.intercept_,3))
else:s=s+str(round(linreg.intercept_,3))
plt.title('太阳镜销售和广告费用之间的关系')
plt.xlabel('x-广告费用(万元)')
plt.ylabel('y-销售量(个)')
plt.legend()
plt.show()
a_i=linreg.intercept_  # a 的估计值
b_i=linreg.coef_[0]    # a 的估计值
print("线性回归方程为:",s)# 计算统计量
Sxx=0
Syy=0
Sxy=0
SSe=Qe=0n=data.shape[1]
x_=x.mean()
y_=y.mean()
for i in range(n):t=(x[i]-x_)**2Sxx=Sxx+tt=(y[i]-y_)**2Syy=Syy+tt=(y[i]-y_)*(x[i]-x_)Sxy=Sxy+tt=(y[i]-y_pre[i])**2SSe=SSe+t
# b的估计值 b_i=Sxy/Sxx
Qe=Syy-b_i*Sxy # Qe==SSe
sigma_i= np.sqrt(Qe/(n-2))  #sigma 的估计值
print("主要统计参数:Sxx={:.3f},Syy={:.3f},Sxy={:.3f},SSe=Qe={:.3f},Sigma={:.3f}".format(Sxx,Syy,Sxy,SSe,sigma_i))
sigma_i= np.sqrt(Qe/(n-2))  #sigma 的估计值
x_i=35 #输入的x值
y_i=b_i*x_i+a_i #相应的预测值
t_c=2.306 # t_a/2的临界值,a=0.05
interval=np.sqrt((1+1/n+(x_i-x_)**2/Sxx)*sigma**2)*t_c
print("对应x={:.3f}的Y的预测值为{:.3f},置信度为95%的预测区间为:({:.3f},{:.3f})".format(x_i,y_i,y_i-interval,y_i+interval))

 2. 对鲍鱼数据集(abalone.txt)进行向前逐步回归,将“Length”列值全设置为1,给出优化后属性列表(参加ppt中【例5-9】,【例5-10】及相关代码)。

答案: final formula is Age~Rings+Viscera+Height+Shucked+Shell+Whole

import numpy as np
import pandas as pd
import statsmodels.api as sm #最小二乘
from statsmodels.formula.api import ols #加载ols模型
# 数据准备
#读取鲍鱼数据集
aba = pd.read_table('abalone.txt',sep=',', names=['Length',	'Diam',	'Height',	'Whole'	,'Shucked',	'Viscera',	'Shell',	'Rings','Age'
],header = None)#该数据集源于UCI,记录了鲍⻥的⽣物属性,⽬标字段是该⽣物的年龄
print(aba.shape)
aba.iloc[:, 0] = 1 # 把类型列置1
print(aba.head())print(aba.shape) #查看数据集大小
print(aba.head(5)) #查看前10行数据
print(aba.columns)#定义向前逐步回归函数
def forward_select(data,target):variate=set(data.columns)  #将字段名转换成字典类型variate.remove(target)  #去掉因变量的字段名selected=[]current_score,best_new_score=float('inf'),float('inf')  #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好)#循环筛选变量while variate:aic_with_variate=[]for candidate in variate:  #逐个遍历自变量formula="{}~{}".format(target,"+".join(selected+[candidate]))  #将自变量名连接起来aic=ols(formula=formula,data=data).fit().aic  #利用ols训练模型得出aic值aic_with_variate.append((aic,candidate))  #将第每一次的aic值放进空列表aic_with_variate.sort(reverse=True)  #降序排序aic值best_new_score,best_candidate=aic_with_variate.pop()  #最好的aic值等于删除列表的最后一个值,以及最好的自变量等于列表最后一个自变量if current_score>best_new_score:  #如果目前的aic值大于最好的aic值variate.remove(best_candidate)  #移除加进来的变量名,即第二次循环时,不考虑此自变量了selected.append(best_candidate)  #将此自变量作为加进模型中的自变量current_score=best_new_score  #最新的分数等于最好的分数print("aic is {},continuing!".format(current_score))  #输出最小的aic值else:print("for selection over!")breakformula="{}~{}".format(target,"+".join(selected))  #最终的模型式子print("final formula is {}".format(formula))model=ols(formula=formula,data=data).fit()return(model)
# 对数据进行前向逐步回归
forward_select(data=aba,target="Age")

http://www.khdw.cn/news/37031.html

相关文章:

  • 河南百度建个网站seowhy教研室
  • 网络网站推广首荐乐云seo优化设计答案四年级上册语文
  • 做网站用什么开发工具好网页制作教程书籍
  • 网站里面如何在新闻列表上显示hot360广告联盟平台
  • facebook外贸推广嘉兴seo外包公司
  • 淘宝网属于b2c还是c2c邯郸seo排名
  • 景洪服装网站建设南昌seo排名
  • 电子商务网站 icp备案黄山seo排名优化技术
  • 门户网站的意义网站设计与网页制作
  • 怎么做时时彩网站代理百度爱采购
  • 福州英文网站建设2345网址大全浏览器
  • 傻瓜网站开发软件简述优化搜索引擎的方法
  • 境外的黄色网站利于seo的建站系统有哪些
  • 深圳网站网页制作公司windows优化大师收费
  • 在线网站创做简历手机google官网注册账号入口
  • 怎么刷网站权重怎么在百度发广告
  • 微信小程序商家版seo的作用是什么
  • 互联斗士网站建站搜索引擎优化的主题
  • 学做档案类网站微信管理系统登录
  • hanchengkeji杭州网站建设深圳网站设计三把火
  • 网站我优化美国搜索引擎
  • 做it的在哪个网站找工作网站搭建平台都有哪些
  • 江苏丹阳建设公司网站天气预报最新天气预报
  • 大型营销型网站制作网站seo报价
  • 怎么做网站的内链网站内容如何优化
  • 销售客户管理软件哪个好廊坊seo排名优化
  • 巴中手机网站建设seo优化
  • 公司建站网络营销的缺点及建议
  • 微网站建设服务怎么在百度上发布信息
  • 设计网站怎样做色卡亚马逊免费的关键词工具