当前位置: 首页 > news >正文

宁波seo外包服务平台做seo如何赚钱

宁波seo外包服务平台,做seo如何赚钱,谷歌chrome安卓版,衣服网站设计背景 在之前的文章中Apache Hudi初探(二)(与flink的结合)–flink写hudi的操作(JobManager端的提交操作) 有说到写hudi数据会涉及到写hudi真实数据以及写hudi元数据,这篇文章来说一下具体的实现 写hudi真实数据 这里的操作就是在HoodieFlinkWriteClient.upsert方法: public …

背景

在之前的文章中Apache Hudi初探(二)(与flink的结合)–flink写hudi的操作(JobManager端的提交操作) 有说到写hudi数据会涉及到写hudi真实数据以及写hudi元数据,这篇文章来说一下具体的实现

写hudi真实数据

这里的操作就是在HoodieFlinkWriteClient.upsert方法:

public List<WriteStatus> upsert(List<HoodieRecord<T>> records, String instantTime) {HoodieTable<T, List<HoodieRecord<T>>, List<HoodieKey>, List<WriteStatus>> table =initTable(WriteOperationType.UPSERT, Option.ofNullable(instantTime));table.validateUpsertSchema();preWrite(instantTime, WriteOperationType.UPSERT, table.getMetaClient());final HoodieWriteHandle<?, ?, ?, ?> writeHandle = getOrCreateWriteHandle(records.get(0), getConfig(),instantTime, table, records.listIterator());HoodieWriteMetadata<List<WriteStatus>> result = ((HoodieFlinkTable<T>) table).upsert(context, writeHandle, instantTime, records);if (result.getIndexLookupDuration().isPresent()) {metrics.updateIndexMetrics(LOOKUP_STR, result.getIndexLookupDuration().get().toMillis());}return postWrite(result, instantTime, table);}
  • initTable
    初始化HoodieFlinkTable
  • preWrite
    在这里几乎没什么操作
  • getOrCreateWriteHandle
    创建一个写文件的handle(假如这里创建的是FlinkMergeAndReplaceHandle),这里会记录已有的文件路径,后续FlinkMergeHelper.runMerge会从这里读取数
    注意该构造函数中的init方法,会创建一个ExternalSpillableMap类型的map来存储即将插入的记录,这在后续upsert中会用到
  • HoodieFlinkTable.upsert
    这里进行真正的upsert操作,会调用FlinkUpsertDeltaCommitActionExecutor.execute,最终会调用到BaseFlinkCommitActionExecutor.execute,从而调用到FlinkMergeHelper.newInstance().runMerge
      public void runMerge(HoodieTable<T, List<HoodieRecord<T>>, List<HoodieKey>, List<WriteStatus>> table,..) {final boolean externalSchemaTransformation = table.getConfig().shouldUseExternalSchemaTransformation();HoodieBaseFile baseFile = mergeHandle.baseFileForMerge();if (externalSchemaTransformation || baseFile.getBootstrapBaseFile().isPresent()) {readSchema = baseFileReader.getSchema();gWriter = new GenericDatumWriter<>(readSchema);gReader = new GenericDatumReader<>(readSchema, mergeHandle.getWriterSchemaWithMetaFields());} else {gReader = null;gWriter = null;readSchema = mergeHandle.getWriterSchemaWithMetaFields();}wrapper = new BoundedInMemoryExecutor<>(table.getConfig().getWriteBufferLimitBytes(), new IteratorBasedQueueProducer<>(readerIterator),Option.of(new UpdateHandler(mergeHandle)), record -> {if (!externalSchemaTransformation) {return record;}return transformRecordBasedOnNewSchema(gReader, gWriter, encoderCache, decoderCache, (GenericRecord) record);});wrapper.execute();。。。mergeHandle.close();}
    • externalSchemaTransformation=
      这里有hoodie.avro.schema.external.transformation配置(默认是false)用来把在之前schame下的数据转换为新的schema下的数据
    • wrapper.execute()
      这里会最终调用到upsertHandle.write(record),也就是UpdateHandler.consumeOneRecord方法被调用的地方
       public void write(GenericRecord oldRecord) {...if (keyToNewRecords.containsKey(key)) {if (combinedAvroRecord.isPresent() && combinedAvroRecord.get().equals(IGNORE_RECORD)) {copyOldRecord = true;} else if (writeUpdateRecord(hoodieRecord, oldRecord, combinedAvroRecord)) {copyOldRecord = false;}writtenRecordKeys.add(key); }}
      
      如果keyToNewRecords报班了对应的记录,也就是说会有uodate的操作的话,就插入新的数据,
      writeUpdateRecord 这里进行数据的更新,并用writtenRecordKeys记录插入的记录
    • mergeHandle.close()
       public List<WriteStatus> close() {writeIncomingRecords();...}...protected void writeIncomingRecords() throws IOException {// write out any pending records (this can happen when inserts are turned into updates)Iterator<HoodieRecord<T>> newRecordsItr = (keyToNewRecords instanceof ExternalSpillableMap)? ((ExternalSpillableMap)keyToNewRecords).iterator() : keyToNewRecords.values().iterator();while (newRecordsItr.hasNext()) {HoodieRecord<T> hoodieRecord = newRecordsItr.next();if (!writtenRecordKeys.contains(hoodieRecord.getRecordKey())) {writeInsertRecord(hoodieRecord);}}}
      
      这里的writeIncomingRecords会判断如果writtenRecordKeys没有包含该记录的话,就直接插入数据,而不是更新

总结一下upsert的关键点:

mergeHandle.close()才是真正的写数据(insert)的时候,在初始化handle的时候会把记录传导writtenRecordKeys中(在HoodieMergeHandle中的init方法)mergeHandle的write() 方法会在写入数据的时候,如果发现有新的数据,则会写入新的数据(update)

写hudi元数据

这里的操作是StreamWriteOperatorCoordinator.notifyCheckpointComplete方法

public void notifyCheckpointComplete(long checkpointId) {...final boolean committed = commitInstant(this.instant, checkpointId);...
}...
private boolean commitInstant(String instant, long checkpointId){...doCommit(instant, writeResults);...
}...
private void doCommit(String instant, List<WriteStatus> writeResults) {// commit or rollbacklong totalErrorRecords = writeResults.stream().map(WriteStatus::getTotalErrorRecords).reduce(Long::sum).orElse(0L);long totalRecords = writeResults.stream().map(WriteStatus::getTotalRecords).reduce(Long::sum).orElse(0L);boolean hasErrors = totalErrorRecords > 0;if (!hasErrors || this.conf.getBoolean(FlinkOptions.IGNORE_FAILED)) {HashMap<String, String> checkpointCommitMetadata = new HashMap<>();if (hasErrors) {LOG.warn("Some records failed to merge but forcing commit since commitOnErrors set to true. Errors/Total="+ totalErrorRecords + "/" + totalRecords);}final Map<String, List<String>> partitionToReplacedFileIds = tableState.isOverwrite? writeClient.getPartitionToReplacedFileIds(tableState.operationType, writeResults): Collections.emptyMap();boolean success = writeClient.commit(instant, writeResults, Option.of(checkpointCommitMetadata),tableState.commitAction, partitionToReplacedFileIds);if (success) {reset();this.ckpMetadata.commitInstant(instant);LOG.info("Commit instant [{}] success!", instant);} else {throw new HoodieException(String.format("Commit instant [%s] failed!", instant));}} else {LOG.error("Error when writing. Errors/Total=" + totalErrorRecords + "/" + totalRecords);LOG.error("The first 100 error messages");writeResults.stream().filter(WriteStatus::hasErrors).limit(100).forEach(ws -> {LOG.error("Global error for partition path {} and fileID {}: {}",ws.getGlobalError(), ws.getPartitionPath(), ws.getFileId());if (ws.getErrors().size() > 0) {ws.getErrors().forEach((key, value) -> LOG.trace("Error for key:" + key + " and value " + value));}});// Rolls back instantwriteClient.rollback(instant);throw new HoodieException(String.format("Commit instant [%s] failed and rolled back !", instant));}
}

主要在commitInstant涉及动的方法doCommit(instant, writeResults)
如果说没有错误发生的话,就继续下一步:
这里的提交过程和spark中一样,具体参考Apache Hudi初探(五)(与spark的结合)

其他

在flink和spark中新写入的文件是在哪里分配对一个的fieldId:

//Flink中
BucketAssignFunction 中processRecord getNewRecordLocation 分配新的 fieldId//Spark中
BaseSparkCommitActionExecutor 中execute方法 中 handleUpsertPartition 涉及到的UpsertPartitioner getBucketInfo方法
其中UpsertPartitioner构造函数中 assignInserts 方法涉及到分配新的 fieldId
http://www.khdw.cn/news/35538.html

相关文章:

  • 网站制作收费无锡网络优化推广公司
  • 一个网站建设域名的构思web网页模板
  • 莱芜seo公司百度关键词优化平台
  • 网站营销教程志鸿优化设计
  • wordpress全端美化在线seo工具
  • 郑州网站推广公司价格上海谷歌seo推广公司
  • 重庆网站建设咨询怎么制作网站链接
  • wordpress 农场模板网站 seo
  • 沈阳做网站建设网站站点
  • 濉溪建设投资网站百度seo和sem
  • 郴州吧百度贴吧网站关键词优化排名技巧
  • 理财网站模版seo关键词推广案例
  • 好看的旅游网站模版关键词排名优化公司哪家强
  • 重生北京上大学开网吧做网站的小说短视频营销推广
  • 南京建设网站维护互联网论坛
  • 软件开发文档总结做seo推广公司
  • 做网站的公司挣钱吗关键词排名优化流程
  • 要是360网站不安全怎么做淘宝宝贝排名查询
  • 淘宝代购网站开发谷歌seo怎么优化
  • 市场营销方案范文5篇seo推广公司排名
  • 机票搜索量徐州seo
  • 辽宁大连网站建设郑州短视频代运营公司
  • 深圳实力网站建设百度快照客服人工电话
  • 新网站怎么做优化搜索引擎关键词优化
  • 蚌埠网站制作哪家好百度收录在线提交
  • wordpress 动态文字温州seo排名公司
  • 自己做的网站加载慢的原因打开百度一下网页版
  • 建设网站服务器自营方式的特点长沙排名优化公司
  • 饭店的网站建设进行评价营销网络的建设有哪些
  • 网站建设与优化推广方案模板seo服务外包价格