当前位置: 首页 > news >正文

宜宾市珙县住房城乡建设网站美容美发培训职业学校

宜宾市珙县住房城乡建设网站,美容美发培训职业学校,模块化网站开发,达美网站建设贝叶斯时序预测(一) 时序预测在统计分析和机器学习领域一直都是一个比较重要的话题。在本系列前面的文章中我们介绍了诸如ARIMA系列方法,Holt-Winter指数平滑模型等多种常用方法,实际上这些看似不同的模型和方法之间都具有千丝万缕…

贝叶斯时序预测(一)

    时序预测在统计分析和机器学习领域一直都是一个比较重要的话题。在本系列前面的文章中我们介绍了诸如ARIMA系列方法,Holt-Winter指数平滑模型等多种常用方法,实际上这些看似不同的模型和方法之间都具有千丝万缕的联系,包括我们一直没有涉及的最复杂的模型LSTM(Long Short Term Memory)。在实际的时序数据分析工作中,你会发现在通常境况下简单模型都比复杂模型更为有效。本文开始讨论另一套时序预测体系:Bayes 时序预测方法。这套方法的背后原理可以很简单,但也可以很深,我们不如从一个例子开始,先积累一些直觉和经验,后续系列会展开理论部分的讨论。

    贝叶斯时序预测通常不会预测时序点,而是给出时序点的分布,但如果希望预测时序点,你可以简单取该分布的均值或者中位数。

贝叶斯定理回顾

在这里插入图片描述
    上图展示了贝叶斯定理的基本结构,这个定理可以认为是机器学习领域最重要的定理了,个人认为没有之一。

让我们来简单回顾一下这个定理的核心内容,

  • P ( A ) P(A) P(A) ,是事件 A A A的先验概率,可以理解为在没有任何具体的数据支持下,我们对事件 A A A发生的概率的直觉,也可称为prior belief(先验信念)。先验信念表示了我们对事件 A A A发生概率的主观理解。

  • P ( B ) P(B) P(B),是事件 B B B的概率,在贝叶斯定理中一般称为边缘概率(marginal)。

  • P ( A ∣ B ) P(A|B) P(AB),是当事件 B B B发生时事件 A A A发生的条件概率,在贝叶斯定理中称为后验概率(posterior)。

  • P ( B ∣ A ) P(B|A) P(BA),适当事件 A A A发生时事件 B B B发生的条件概率,在贝叶斯定理中称为似然性(likelihood)。

        我们可以这样理解贝叶斯公式:首先定义一个我们对某个事件的主观理解的先验分布,然后通过数据和事实我们得到似然性,条件于边缘概率后得到后延概率。 通俗来说,我们对一个事情有一个信念,当我们看到与这个事情有关的数据和事实后,我们会更新这个信念。举个例子来说,例如我们有一个硬币,我们相信随机抛这个硬币,落地时正面朝上的概率时1/2。但事实上这个硬币由于制造工艺的随机性导致其正面朝上的概率为2/3,当我们做抛硬币实验时,随着我们观察到正面朝上的概率大于1/2,我们对这件事情的信念会随着事实而变化。

        关于贝叶斯定理,日后我们还会做进一步讨论,尝试从其他维度更深一步理解这个重要定理。

贝叶斯时序预测

    贝叶斯时序预测模型的一种最常用的方法称为:DGLM(Dynamic Generalized Linear Model),既动态泛化线性模型,这里

  • 动态,模型系数会随时间变化而变化。

  • 泛化,过观察的分布可以是多种分布,例如正态分布、泊松分布、伯努利分布、二项式分布等。

  • 线性,预测值既系数与预测变量的乘积的线性组合。

    此模型的关键要素为:

λ t = F t θ t \lambda_t=F_t \theta_t λt=Ftθt

  • λ t \lambda_t λt是线性预测变量

  • θ r \theta_r θr是状态向量,DGLM的系数融入到状态向量中,实际建模中此向量由一些组件组成,例如趋势、回归性、季节、节假日和特殊事件等。

  • F t F_t Ft是回归向量

        这些变量都会有对应的折现因子,折现因子是在构建模型中由我们设定的,它表示我们给当先信息和历史信息所分配的权重。

Python 简单例子

读入数据和所需包

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dt
from pybats.analysis import analysis
from pybats.point_forecast import mediandf = pd.read_csv('airpassengers.csv')# Changing the datatype
df["Month"] = pd.to_datetime(df['Month'], format='%Y-%m')# Setting the Date as index
df = df.set_index('Month')Y = df['#Passengers'].values

pybats为贝叶斯时许预测提供了很多参数,我们先来简单看一下

k = 1 # 向前预测一步
forecast_start = 0 # 预测从时间零点开始
forecast_end = len(df)-1 # 预测在数据最后结束mod, samples = analysis(Y,family="poisson", # 使用泊松分布forecast_start=forecast_start,forecast_end=forecast_end,k=k,nsamps=100, # 每个月取一百个样本prior_length=6, # 取6个点来定义先验分布rho=.9, # 随机效用扩展deltrend=0.5, # 趋势折现因子delregn=0.9 # 回归折现因子
)forecast = median(samples) # 预测

参数解释:

  • family=”possion“: 我们可尝试使用泊松分布对正整数建模;使用normal对连续实数;使用bernoulli对0-1;使用binomial对bernoulli的加总和。
  • nsamps=100:定义样本的数量,通过此样本可得到信任区间(credibale interval)和点估计(point estimate)
  • prior_length=6:构造先验分布的点的数量,这个数值越大说明使用时序开始数据来建模先验分布的观测值越多
  • rho=.9:随机效用扩展,这个参数增加了预测的波动
# Plotting
fig, ax = plt.subplots(1,1, figsize=(8, 6))   
ax = plot_data_forecast(fig, ax, Y, forecast, samples,dates=df.index)
ax = ax_style(ax, ylabel='Sales', xlabel='Time',legend=['Forecast', 'Passengers', 'Credible Interval'])

在这里插入图片描述
注意,上图中开始的水平线表明了建立先验分布所使用的月数,所以这里没有开始预测。 可以使用analysis函数来评估预测效果和对数据的拟合程度。

就这份数据而言,看上去拟合得不错,但我们需要知道

  • 这个例子实际上不是预测,只能算是”事后诸葛亮“

  • 这个数据集实际上非常好,有比较强的趋势和季节成分
    PyBATS还有很多其他功能我们没有在这里演示,例如:

  • 增加节假日和特殊事件

  • 深一步使用DGLM

  • 使用隐含因子(latent factors),例如增加机票的平均价格来优化乘客人数的预测过程。

这只是个非常简单且不太完整的例子,如开头所言,这个例子只能给我们一些感性认识,后续笔者会分享更多关于这个主题的深层次的讨论和实践。

http://www.khdw.cn/news/31679.html

相关文章:

  • 佛山企业网站建设多少钱大数据推广公司
  • 有人用公司名字做网站 怎么维权软文推广方案
  • 网站建设公司企业模板下载重庆seo网站建设
  • b2c网站制作需要多少钱百度发广告需要多少钱
  • 专门做进口产品的网站6百度竞价排名背后的伦理问题
  • 网页游戏排行榜前十名大型网络游戏长沙seo网站
  • 网站开发 语音搜狗链接提交入口
  • 快手刷粉网站推广app开发制作
  • web网站开发毕业论文中囯军事网
  • 南乐县住房和城乡建设局网站百度seo营销公司
  • 网站怎么做要钱吗网络营销推广实战宝典
  • 定制型网站建设服务本地服务推广平台哪个好
  • 万网如何建设网站seo团队管理系统
  • 文登市城乡建设局网站交换友情链接的条件
  • 网络安全形势下怎么建设学校网站双11销量数据
  • 仿站小工具怎么用企业培训体系搭建
  • 长春网站建设培训专门搜索知乎内容的搜索引擎
  • 建设外围彩票网站怎样做企业宣传推广
  • 马格南摄影网站软文发稿平台
  • 合肥建设局网站领导任何小说都能搜到的软件
  • hefei 网站制作怎么建设自己的网站
  • 男的和女的做那种短视频网站抖音的商业营销手段
  • phpcms 网站标题网络整合营销
  • 衡水企业网站设计正规微商免费推广软件
  • 专业俄语网站设计windows优化大师有用吗
  • 无锡网站设计服务免费的行情软件app网站
  • 建设网站的css文件夹西安百度推广优化
  • 浅谈电子商务网站建设与管理的理解网站推广优化招聘
  • 做毕设网站多少钱百度app关键词优化
  • 做网站生意越来越差网络营销优化推广公司