当前位置: 首页 > news >正文

内江市网站建设国内免费推广产品的网站

内江市网站建设,国内免费推广产品的网站,做网站不小心复制了别人的链接,建设银行手机版官方网站下载梯度下降 一、线性回归 线性回归算法推导过程可以基于最小二乘法直接求解,但这并不是机器学习的思想,由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。 1.初始化 import numpy as np import os %matplotlib inline import matplotli…

梯度下降

一、线性回归

线性回归算法推导过程可以基于最小二乘法直接求解,但这并不是机器学习的思想,由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。

1.初始化
import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
2.回归方程

在这里插入图片描述

import numpy as np
X = 2*np.random.rand(100,1)
y = 4+ 3*X +np.random.randn(100,1)
plt.plot(X,y,'b.')
plt.xlabel('X_1')
plt.ylabel('y')
plt.axis([0,2,0,15])
plt.show()

在这里插入图片描述

X_b = np.c_[np.ones((100,1)),X]
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print(theta_best) 
# 输出 :
array([[4.21509616],[2.77011339]])
X_new = np.array([[0],[2]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_predict = X_new_b.dot(theta_best)
print(y_predict)
# 输出:
array([[4.21509616],[9.75532293]])
plt.plot(X_new,y_predict,'r--')
plt.plot(X,y,'b.')
plt.axis([0,2,0,15])
plt.show()

在这里插入图片描述

二、调用sklearn API

sklearnAPI官网: https://scikit-learn.org/stable/modules/classes.html

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
print (lin_reg.coef_)
print (lin_reg.intercept_)
# 
[[2.77011339]]
[4.21509616]

三、梯度下降

在这里插入图片描述
当步长较小时,训练次数较多;
在这里插入图片描述
当步长较大时,波动大;
在这里插入图片描述
学习率应当尽可能小,随着迭代的进行应当越来越小。
在这里插入图片描述
在这里插入图片描述

1.批量梯度下降
eta = 0.1 #学习率
n_iterations = 1000 # 迭代次数
m = 100
theta = np.random.randn(2,1) # 随机初始化参数theta
for iteration in range(n_iterations):gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradients
theta
# 
array([[4.21509616],[2.77011339]])
X_new_b.dot(theta)
#
array([[4.21509616],[9.75532293]])
theta_path_bgd = []
def plot_gradient_descent(theta,eta,theta_path = None):m = len(X_b)plt.plot(X,y,'b.')n_iterations = 1000for iteration in range(n_iterations):y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'b-')gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel('X_1')plt.axis([0,2,0,15])plt.title('eta = {}'.format(eta))
theta = np.random.randn(2,1)plt.figure(figsize=(10,4))
plt.subplot(131)
plot_gradient_descent(theta,eta = 0.02)
plt.subplot(132)
plot_gradient_descent(theta,eta = 0.1,theta_path=theta_path_bgd)
plt.subplot(133)
plot_gradient_descent(theta,eta = 0.5)
plt.show()

在这里插入图片描述

2.随机梯度下降

在这里插入图片描述

theta_path_sgd=[]
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0 = 5
t1 = 50def learning_schedule(t):return t0/(t1+t)
theta = np.random.randn(2,1)for epoch in range(n_epochs):for i in range(m):if epoch < 10 and i<10:y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'r-')random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(epoch*m+i)theta = theta-eta*gradientstheta_path_sgd.append(theta)plt.plot(X,y,'b.')
plt.axis([0,2,0,15])   
plt.show()

在这里插入图片描述

3.MiniBatch梯度下降
theta_path_mgd=[]
n_epochs = 50
minibatch = 16
theta = np.random.randn(2,1)
t0, t1 = 200, 1000
def learning_schedule(t):return t0 / (t + t1)
np.random.seed(42)
t = 0
for epoch in range(n_epochs):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0,m,minibatch):t+=1xi = X_b_shuffled[i:i+minibatch]yi = y_shuffled[i:i+minibatch]gradients = 2/minibatch* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(t)theta = theta-eta*gradientstheta_path_mgd.append(theta)
theta 
# 
array([[4.25490684],[2.80388785]])

四、3种策略的对比实验

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)
plt.figure(figsize=(12,6))
plt.plot(theta_path_sgd[:,0],theta_path_sgd[:,1],'r-s',linewidth=1,label='SGD')
plt.plot(theta_path_mgd[:,0],theta_path_mgd[:,1],'g-+',linewidth=2,label='MINIGD')
plt.plot(theta_path_bgd[:,0],theta_path_bgd[:,1],'b-o',linewidth=3,label='BGD')
plt.legend(loc='upper left')
plt.axis([3.5,4.5,2.0,4.0])
plt.show()

在这里插入图片描述
实际当中用minibatch比较多,一般情况下选择batch数量应当越大越好。

http://www.khdw.cn/news/29996.html

相关文章:

  • 双井网站建设昆山网站制作哪家好
  • 如何制作wordpress网站地图网站怎么做到秒收录
  • h5是什么网站上面做的站长之家网站流量查询
  • 物流网站建设计划书四种营销策略
  • 厦门做网站推广最新注册域名查询
  • 怎么做网店重庆自动seo
  • 如何建设属于自己的网站最新疫情爆发
  • 外包做的网站百度平台商家订单查询
  • 哪些网站可以注册邮箱百度页面
  • 高端网站开发设计简介如何建立自己的网页
  • 入驻天猫商城的条件和费用seo是什么意思seo是什么职位
  • 邢台贴吧最新消息达州seo
  • 如何做采集网站免费推广seo
  • 邯郸企业网站团队福州短视频seo方法
  • 个人网站备案审批近几天的新闻摘抄
  • 推荐网站建设品牌聊城网站推广公司
  • 网站策划方案实例seo排名赚能赚钱吗
  • 网站上做推广百度推广官网入口
  • 仿牌做外贸建网站中国唯一没有疫情的地方
  • 网站建设对图片有哪些要求长尾词挖掘免费工具
  • 做英文网站的流程北京今日重大新闻
  • 外贸做那种网站信息如何优化上百度首页公司
  • 智能建站系统cms免费软文网站
  • 3dmax建模seo型网站
  • 余姚建设局网站凌云seo博客
  • 怎么做音乐网站湖北seo整站优化
  • 做网站后台需要写代码吗seo提供服务
  • 新乡做网站的公司有那些给大家科普一下b站推广网站
  • 怎么查询网站备案服务商是哪个市场调研的内容
  • 如何检测做的网站的兼容性搜索引擎营销的常见方式