当前位置: 首页 > news >正文

手机网站开发成本全网营销课程

手机网站开发成本,全网营销课程,广州发改委: 加大市场帮扶力度,怎样利用网站做引流版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 本文的VB版本请访问:图像分割-Grabcut法-CSDN博客 GrabCut是一种基于图像分割的技术,它可以用于将图像中的…

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

本文的VB版本请访问:图像分割-Grabcut法-CSDN博客

GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免边界处的像素被错误地分类。GrabCut算法在图像分割中有着广泛的应用,例如人像分割、物体抠图等。

EmguCV使用CvInvoke.GrabCut方法来执行GrabCut算法,该方法声明如下:

public static void GrabCut(

           IInputArray img,

                    IInputOutputArray mask,

                    Rectangle rect,

                    IInputOutputArray bgdModel,

                    IInputOutputArray fgdModel,

                    int iterCount,

                   GrabcutInitType type

)

参数说明:

  1. img:输入输出的图像,必须是三通道彩色图像。
  2. mask:指定的掩码图像,必须是单通道灰度图像,并且与输入图像具有相同的尺寸。可以传入0-3的值,分别为:0表示明显为背景的像素、1表示冥相位前景的像素、2表示可能为背景的像素、3表示可能为前景的像素。
  3. rect:指定的矩形框,用于定位大概率可能为前景目标的位置。
  4. bgdModel:背景模型,必须是单通道浮点型Mat。
  5. fgdModel:前景模型,必须是单通道浮点型Mat。
  6. iterCount:迭代次数,用于控制算法的收敛性。
  7. type:GrabCut算法初始化类型,可以选择GrabCutInitType.WithRect或GrabCutInitType.WithMask,分别表示根据提供的矩形初始化或根据掩码初始化。

该方法没有返回值,而是直接在mask图像上进行前景分割操作,最终获得的mask包含0-3的值,含义如参数中说明。

        //Grabcut法 private void Button5_Click(object sender, EventArgs e){Mat m = new Mat("C:\\learnEmgucv\\tower.jpg", ImreadModes.AnyColor);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 1, GrabcutInitType.InitWithRect);//输出的result只有4个值://0:确定背景//1:确定前景//2:可能背景//3:可能前景//演示框选范围CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);ImageBox1.Image = m;//标记区域Matrix<byte> matr = new Matrix<byte>(result.Rows, result.Cols);result.CopyTo(matr);for (int i = 0; i < matr.Cols; i++){for (int j = 0; j < matr.Rows; j++){//将确定背景和可能背景标记为0,否则为255if (matr[j, i] == 0 || matr[j, i] == 2)matr[j, i] = 0;elsematr[j, i] = 255;}}Mat midm = new Mat();midm = matr.Mat;//显示标记的图像CvInvoke.Imshow("midm", midm);//灰度转为彩色Mat midm1 = new Mat();CvInvoke.CvtColor(midm, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();//And运算CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-5 Grabcut法分离前景

       //Grabcut法 private void Button6_Click(object sender, EventArgs e){Mat m = CvInvoke.Imread("C:\\learnEmgucv\\tower.jpg", ImreadModes.Color);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 5, GrabcutInitType.InitWithRect);Image<Bgr, byte> src = m.ToImage<Bgr, byte>();Image<Bgr, byte> dst = new Image<Bgr, byte>(new Size(src.Width, src.Height));Image<Gray, byte> mask = result.ToImage<Gray, byte>();//直接操作Image像素点for (int i = 0; i < src.Rows; i++){for (int j = 0; j < src.Cols; j++){//如果是确定前景和可能前景,直接保留原像素点颜色,否则为黑色if (mask.Data[i, j, 0] == 1 || mask.Data[i, j, 0] == 3){dst.Data[i, j, 0] = src.Data[i, j, 0];dst.Data[i, j, 1] = src.Data[i, j, 1];dst.Data[i, j, 2] = src.Data[i, j, 2];}else{dst.Data[i, j, 0] = 0;dst.Data[i, j, 1] = 0;dst.Data[i, j, 2] = 0;}}}ImageBox1.Image = dst;}

输出结果如下图所示:

图8-6 Grabcut法分离前景

      //标记为确定前景,这里使用InitWithMask 参数private void Button7_Click(object sender, EventArgs e){Mat m = new Mat("c:\\learnEmgucv\\lena.jpg", ImreadModes.AnyColor);Mat mask = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 340, 480);//使用前景为全白色Mat m1 = new Mat("c:\\learnEmgucv\\lena_fillwhite.jpg", ImreadModes.Grayscale);Mat mask1 = new Mat();//二值化CvInvoke.Threshold(m1, mask1, 250, 1, ThresholdType.Binary);CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);//标记之后再调用GrabCut,使用InitWithMask参数CvInvoke.GrabCut(m, mask1, rect, bg, fg, 2, GrabcutInitType.InitWithMask);Matrix<byte> matrx = new Matrix<byte>(mask1.Rows, mask1.Cols);mask1.CopyTo(matrx);for (int i = 0; i < matrx.Cols; i++)for (int j = 0; j < matrx.Rows; j++)if (matrx[i, j] == 0 || matrx[i, j] == 2)matrx[i, j] = 0;elsematrx[i, j] = 255;Mat midm2 = new Mat();midm2 = matrx.Mat;Mat midm1 = new Mat();CvInvoke.CvtColor(midm2, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-7 Grabcut法分离前景

由于.net平台下C#和vb.NET很相似,本文也可以为C#爱好者提供参考。

学习更多vb.net知识,请参看vb.net 教程 目录

http://www.khdw.cn/news/29242.html

相关文章:

  • 在线logo制作网站百度seo排名优化系统
  • 专做土特产的网站广州优化seo
  • 厦门模板建站系统外贸seo公司
  • 海外网站营销百度推广登录入口下载
  • 网站首页被降权怎么做正规赚佣金的平台
  • wordpress耗内存北京优化网站方法
  • 做网站需要知道哪些事情网站页面禁止访问
  • 怎么做劳务公司网站长沙有实力seo优化公司
  • 百度怎么联系客服网站seo系统
  • 棉桃剥壳机做网站seoheuni
  • 网站建设销售工资多少建站教程
  • 企业网站内的问答模式怎么做sem竞价开户
  • 做美甲团购网站常德网站建设公司
  • 网站建设中+网页代码青岛seo建站
  • wordpress入门建站教程什么是seo网站优化
  • 内蒙古包头做网站的公司保定seo排名
  • 杭州优化外包北京网站优化方案
  • 商务网站建设理论依据热狗网站排名优化外包
  • 吉林省建设招标网站杭州网站推广公司
  • 企业网站建设在国内现状济南做网站公司
  • 做卫生用品都在什么网站百度指数官网登录
  • 开个公司大概需要多少钱北京seo外包公司要靠谱的
  • 贵阳做网站哪家公司好如何建立一个网站
  • 十堰公司做网站比较开放的浏览器
  • 怎样做网站建设的程序中国最大网站排名
  • 计算机网站建设与开发seo优化靠谱吗
  • 网站备案密码重置申请表路由器优化大师
  • 唐山市丰润区城乡建设局网站兰州网络推广推广机构
  • 网站制作服务热线seo营销课程培训
  • 怎么做淘宝优惠券的网站国内新闻