当前位置: 首页 > news >正文

本地服务器怎么做网站seo外包公司哪家专业

本地服务器怎么做网站,seo外包公司哪家专业,内外外贸购物网站建设,基于j2ee的网站开发设计开题报告归并排序是一种遵循分而治之方法的排序算法。它的工作原理是递归地将输入数组划分为较小的子数组并对这些子数组进行排序,然后将它们合并在一起以获得排序后的数组。 简单来说,归并排序的过程就是将数组分成两半,对每一半进行排序&#xff0c…

        归并排序是一种遵循分而治之方法的排序算法。它的工作原理是递归地将输入数组划分为较小的子数组并对这些子数组进行排序,然后将它们合并在一起以获得排序后的数组。

        简单来说,归并排序的过程就是将数组分成两半,对每一半进行排序,然后将已排序的两半合并在一起。重复这个过程,直到整个数组排序完毕。

归并排序算法

归并排序是如何工作的?
        归并排序是一种流行的排序算法,以其高效和稳定而闻名。它遵循分而治之的方法对给定的元素数组进行排序。

以下是合并排序如何工作的分步说明:
        1、划分:递归地将列表或数组划分为两半,直到不能再划分为止。
        2、征服:使用合并排序算法对每个子数组进行单独排序。
        3、合并:已排序的子数组按排序顺序合并在一起。该过程将继续,直到两个子数组中的所有元素都已合并。

归并排序示意图:
让我们使用归并排序对数组或列表[38, 27, 43, 10]进行排序 

让我们看看上面例子的工作原理:
划分:
        [38, 27, 43, 10]分为[38, 27 ] 和[43, 10]。
        [38, 27]分为[38]和[27]。
        [43, 10]分为[43]和[10]。

征服:
        [38]已经排序。
        [27]已经排序。
        [43]已经排序。
        [10]已经排序。

合并:
        合并[38]和[27]得到[27, 38]。
        合并[43]和[10]得到[10,43]。
        合并[27, 38]和[10,43]得到最终的排序列表[10, 27, 38, 43]

因此,排序列表为[10, 27, 38, 43]。

归并排序的实现:
// C++ program for Merge Sort
#include <bits/stdc++.h>
using namespace std;

// Merges two subarrays of array[].
// First subarray is arr[begin..mid]
// Second subarray is arr[mid+1..end]
void merge(int array[], int const left, int const mid,
           int const right)
{
    int const subArrayOne = mid - left + 1;
    int const subArrayTwo = right - mid;

    // Create temp arrays
    auto *leftArray = new int[subArrayOne],
         *rightArray = new int[subArrayTwo];

    // Copy data to temp arrays leftArray[] and rightArray[]
    for (auto i = 0; i < subArrayOne; i++)
        leftArray[i] = array[left + i];
    for (auto j = 0; j < subArrayTwo; j++)
        rightArray[j] = array[mid + 1 + j];

    auto indexOfSubArrayOne = 0, indexOfSubArrayTwo = 0;
    int indexOfMergedArray = left;

    // Merge the temp arrays back into array[left..right]
    while (indexOfSubArrayOne < subArrayOne
           && indexOfSubArrayTwo < subArrayTwo) {
        if (leftArray[indexOfSubArrayOne]
            <= rightArray[indexOfSubArrayTwo]) {
            array[indexOfMergedArray]
                = leftArray[indexOfSubArrayOne];
            indexOfSubArrayOne++;
        }
        else {
            array[indexOfMergedArray]
                = rightArray[indexOfSubArrayTwo];
            indexOfSubArrayTwo++;
        }
        indexOfMergedArray++;
    }

    // Copy the remaining elements of
    // left[], if there are any
    while (indexOfSubArrayOne < subArrayOne) {
        array[indexOfMergedArray]
            = leftArray[indexOfSubArrayOne];
        indexOfSubArrayOne++;
        indexOfMergedArray++;
    }

    // Copy the remaining elements of
    // right[], if there are any
    while (indexOfSubArrayTwo < subArrayTwo) {
        array[indexOfMergedArray]
            = rightArray[indexOfSubArrayTwo];
        indexOfSubArrayTwo++;
        indexOfMergedArray++;
    }
    delete[] leftArray;
    delete[] rightArray;
}

// begin is for left index and end is right index
// of the sub-array of arr to be sorted
void mergeSort(int array[], int const begin, int const end)
{
    if (begin >= end)
        return;

    int mid = begin + (end - begin) / 2;
    mergeSort(array, begin, mid);
    mergeSort(array, mid + 1, end);
    merge(array, begin, mid, end);
}

// UTILITY FUNCTIONS
// Function to print an array
void printArray(int A[], int size)
{
    for (int i = 0; i < size; i++)
        cout << A[i] << " ";
    cout << endl;
}

// Driver code
int main()
{
    int arr[] = { 12, 11, 13, 5, 6, 7 };
    int arr_size = sizeof(arr) / sizeof(arr[0]);

    cout << "Given array is \n";
    printArray(arr, arr_size);

    mergeSort(arr, 0, arr_size - 1);

    cout << "\nSorted array is \n";
    printArray(arr, arr_size);
    return 0;
}

// This code is contributed by Mayank Tyagi
// This code was revised by Joshua Estes

输出
给定数组是
12 11 13 5 6 7

排序后的数组是
5 6 7 11 12 13

归并排序的复杂度分析:

时间复杂度:
最佳情况: O(n log n),当数组已经排序或接近排序时。
平均情况: O(n log n),当数组随机排序时。
最坏情况: O(n log n),当数组按相反顺序排序时。
空间复杂度: O(n),合并时使用的临时数组需要额外的空间。

归并排序的优点:
稳定性:归并排序是一种稳定的排序算法,这意味着它保持输入数组中相等元素的相对顺序。
保证最坏情况下的性能:归并排序的最坏情况时间复杂度为O(N logN),这意味着即使在大型数据集上它也能表现良好。
易于实现:分而治之的方法很简单。

归并排序的缺点:
空间复杂度:归并排序在排序过程中需要额外的内存来存储合并后的子数组。 
非就地:合并排序不是就地排序算法,这意味着它需要额外的内存来存储排序后的数据。这对于关注内存使用的应用程序来说可能是一个缺点。

归并排序的应用:
对大型数据集进行排序
外部排序(当数据集太大而无法容纳在内存中时)
反转计数(计算数组中反转的次数)
查找数组的中位数

http://www.khdw.cn/news/28709.html

相关文章:

  • 如何做网站的登录日志思亿欧seo靠谱吗
  • 网站开发基本步骤怎么查百度竞价关键词价格
  • 做私彩网站代理会坐牢吗怎么在百度上发布广告
  • 淘宝网站icp备案百度搜索链接
  • 免费crm软件大全苏州百度搜索排名优化
  • 唯美网站模板口碑营销的成功案例
  • survive制作公司天津seo排名费用
  • 小米手机网站建设目标站长素材免费下载
  • 映射做网站如何做网站营销推广
  • 建立网站的目录结构应注意哪些问题云seo关键词排名优化软件
  • 云主机重装系统后网站重新部署吗世界网站排名查询
  • 如何给网站加cdn清博大数据舆情监测平台
  • 个人免费网站开发建网站流程
  • windows2008 iis 网站定制型营销网站建设
  • wordpress 程序seo网页优化服务
  • 公司管理系统名称大全郑州网站优化顾问
  • 找人做网站会给源代码吗资讯门户类网站有哪些
  • 池州城乡住房建设厅网站买友情链接
  • 谁用腾讯风铃做网站的网站销售怎么推广
  • 企业建设网站的意义网站排名优化公司哪家好
  • 个人怎么做公司网站百度知道在线
  • 国家外汇管理局网站怎么做报告肇庆seo排名
  • wordpress 百度联盟家庭优化大师
  • 网站logo素材深圳推广公司有哪些
  • 带询盘外贸网站源码分销渠道
  • dremrever做网站流程推广网络广告
  • 什么途径做网站最靠谱磁力狗在线
  • 校园网站模板下载网站服务器速度对seo有什么影响
  • js做示爱网站例子山东seo优化
  • 做网站属于软件开发吗百度官方app下载