当前位置: 首页 > news >正文

php如何做视频网站神马seo教程

php如何做视频网站,神马seo教程,企业网站建设实验感想,哪些做批发的网站比较正规Python数据分析项目-基于Python的销售数据分析项目 文章目录 Python数据分析项目-基于Python的销售数据分析项目项目介绍数据分析结果导出数据查阅 数据分析内容哪些类别比较畅销?哪些商品比较畅销?不同门店的销售额占比哪个时间段是超市的客流高封期?查看源数据类型计算本月…

Python数据分析项目-基于Python的销售数据分析项目

文章目录

  • Python数据分析项目-基于Python的销售数据分析项目
  • 项目介绍
    • 数据
    • 分析结果导出
    • 数据查阅
  • 数据分析内容
    • 哪些类别比较畅销?
    • 哪些商品比较畅销?
    • 不同门店的销售额占比
    • 哪个时间段是超市的客流高封期?
    • 查看源数据类型
    • 计算本月的相关的指标
    • 计算上月相关指标
    • 计算去年同期相关指标
    • 创建DataFrame 添加同比和环比字段

项目介绍

数据

在这里插入图片描述
在这里插入图片描述

分析结果导出

在这里插入图片描述

近些年来,国内大型连锁超市如雨后春笋般迸发,对于各个超市来说,竞争压力不可谓 不大,为了拓展、保留客户,各种促销手段应运而生。 以下为国内某连锁超市的成交统计数据,针对于该数据,挖掘其中价值,为该超市的促销手段提供技术支持。

数据查阅

import pandas as pd
from datetime import datetime# 导入数据源,parse_dates:将时间字符串转为日期时间格式
data=pd.read_csv("order-14.3.csv",parse_dates=["成交时间"],encoding='gbk')
print(data.shape)
data.head()
(3478, 7)
商品ID	类别ID	门店编号	单价	销量	成交时间	订单ID
0	30006206	915000003	CDNL	25.23	0.328	2017-01-03 09:56:00	20170103CDLG000210052759
1	30163281	914010000	CDNL	2.00	2.000	2017-01-03 09:56:00	20170103CDLG000210052759
2	30200518	922000000	CDNL	19.62	0.230	2017-01-03 09:56:00	20170103CDLG000210052759
3	29989105	922000000	CDNL	2.80	2.044	2017-01-03 09:56:00	20170103CDLG000210052759
4	30179558	915000100	CDNL	47.41	0.226	2017-01-03 09:56:00	20170103CDLG000210052759

数据分析内容

哪些类别比较畅销?

# ascending=False 降序
data.groupby("类别ID")["销量"].sum().reset_index().sort_values(by="销量",ascending=False).head(10)
  1. data.groupby("类别ID")["销量"].sum(): 这一部分首先对数据集 data 按照 “类别ID” 进行分组,然后针对每个类别的销量("销量"列)进行求和操作。

  2. .reset_index(): 对分组后的结果进行重置索引,将其转换为一个新的DataFrame,以便后续操作。

  3. .sort_values(by="销量", ascending=False): 对DataFrame按照销量("销量"列)进行降序排序,即将销量最高的类别排在最前面。参数 ascending=False 表示按降序排列。

  4. .head(10): 获取排序后的前10行数据,即销量最高的10个商品类别。

哪些商品比较畅销?

pd.pivot_table(data,index="商品ID",values="销量",aggfunc="sum").reset_index().sort_values(by="销量",ascending=False).head(10)
  1. pd.pivot_table(data, index="商品ID", values="销量", aggfunc="sum"):这部分代码使用了 Pandas 库中的 pivot_table 函数,它用于创建透视表。在这里,它的参数含义如下:

    • data:指定数据源,即数据集。
    • index="商品ID":表示将 “商品ID” 列作为透视表的行索引。
    • values="销量":表示将 “销量” 列作为需要聚合的数值列。
    • aggfunc="sum":表示对 “销量” 列进行汇总计算,这里使用的是求和函数 sum
  2. .reset_index():对生成的透视表结果进行重置索引,将其转换为一个新的DataFrame对象。

  3. .sort_values(by="销量", ascending=False):对透视表结果按照 “销量” 列进行降序排序,即将销量最高的商品排在最前面。参数 ascending=False 表示按降序排列。

  4. .head(10):获取排序后的前10行数据,即销量最高的10个商品。

不同门店的销售额占比

data["销售额"]=data["销量"]*data["单价"]
# 不同门店销售
print(data.groupby("门店编号")["销售额"].sum())
# 不同门店销售额占比
dfbb = data.groupby("门店编号")[["销售额"]].sum()/data["销售额"].sum()
dfbb.rename(columns={'销售额':'销售额占比'},inplace=True)
dfbb
  1. data["销售额"]=data["销量"]*data["单价"]:首先,创建了一个新的列 “销售额”,其值为 “销量” 列和 “单价” 列对应位置的乘积,表示每个商品的销售额。

  2. print(data.groupby("门店编号")["销售额"].sum()):使用 groupby 函数按照 “门店编号” 对数据进行分组,然后对每个门店的销售额进行求和操作,得到不同门店的销售额总和。

  3. dfbb = data.groupby("门店编号")[["销售额"]].sum()/data["销售额"].sum():这一部分是计算各门店销售额在总销售额中的占比。首先,使用 groupby 函数按照 “门店编号” 分组,然后对每个门店的销售额进行求和操作。接着,将每个门店的销售额与总销售额相除,得到销售额占比。

  4. dfbb.rename(columns={'销售额':'销售额占比'},inplace=True):对生成的 DataFrame 对象进行重命名,将列名 “销售额” 改为 “销售额占比”,以便更清晰地表示数据含义。

import matplotlib as pltplt.rcParams['figure.figsize'] = (16.0, 8.0) # 设置figure_size尺寸
plt.rcParams['font.sans-serif']=['SimHei']    # 用来设置字体样式以正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    # 默认是使用Unicode负号,设置正常显示字符,如正常显示负号
plt.rcParams['font.size'] = 15(data.groupby("门店编号")["销售额"].sum()/data["销售额"].sum()).plot.pie()

在这里插入图片描述

哪个时间段是超市的客流高封期?

# 利用自定义时间格式函数strftime提取小时数
data["小时"]=data["成交时间"].map(lambda x:int(x.strftime("%H")))
# 对小时和订单去重
traffic=data[["小时","订单ID"]].drop_duplicates()
# 求每小时的客流量
traffic.groupby("小时")["订单ID"].count().plot()
  1. data["小时"]=data["成交时间"].map(lambda x:int(x.strftime("%H"))):这一部分代码使用了 map 函数和 lambda 表达式,将 “成交时间” 列中的时间信息提取出小时数,并存储到新的列 “小时” 中。strftime("%H") 方法用于将时间转换为字符串,并提取小时部分。

  2. traffic=data[["小时","订单ID"]].drop_duplicates():这一部分代码将数据集中的 “小时” 和 “订单ID” 列提取出来,并对其进行去重操作,得到每小时的订单数量。

  3. traffic.groupby("小时")["订单ID"].count().plot():这部分代码计算了每小时的客流量,首先使用 groupby 函数按照 “小时” 列进行分组,然后对每个小时的订单ID数量进行计数操作。最后,调用 plot 方法绘制曲线图,横轴为小时,纵轴为客流量(订单数量)。

在这里插入图片描述

查看源数据类型

import pandas as pd
from datetime import datetimedata=pd.read_csv("order-14.1.csv",parse_dates=["成交时间"],encoding='gbk')
data.head()
# print(data.head(5))
# 查看源数据类型
data.info()
  1. import pandas as pd:这行代码导入了Pandas库,并将其重命名为 pd,以便在后续代码中使用。

  2. from datetime import datetime:从 datetime 模块中导入 datetime 类。这是为了后续在解析日期时间时使用。

  3. data=pd.read_csv("order-14.1.csv",parse_dates=["成交时间"],encoding='gbk'):这行代码使用 pd.read_csv() 函数读取名为 “order-14.1.csv” 的CSV文件,并将其加载到名为 data 的DataFrame中。其中的参数解释如下:

    • "order-14.1.csv":指定要读取的CSV文件的路径。
    • parse_dates=["成交时间"]:指定要解析为日期时间类型的列名。在这里,“成交时间” 列会被解析为日期时间类型,以便后续进行时间序列的分析。
    • encoding='gbk':指定文件的编码格式为GBK,以正确解析包含中文字符的数据。
  4. data.head():这行代码输出 data DataFrame 的前5行数据,以便查看数据的样式和结构。

  5. data.info():这行代码用于打印有关DataFrame的基本信息,包括每列的名称、非空值的数量以及每列的数据类型等。这有助于了解数据的完整性和结构。

计算本月的相关的指标

# 计算本月的相关的指标
This_month=data[(data["成交时间"]>=datetime(2018,2,1))&(data["成交时间"]<=datetime(2018,2,28))]
# 销售额计算
sales_1=(This_month["销量"]*This_month['单价']).sum()
# 客流量计算
traffic_1=This_month["订单ID"].drop_duplicates().count()
# 客单价计算
s_t_1=sales_1/traffic_1
print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_1,traffic_1,s_t_1))
  1. This_month=data[(data["成交时间"]>=datetime(2018,2,1))&(data["成交时间"]<=datetime(2018,2,28))]:这行代码根据成交时间筛选出了本月的订单数据。使用了DataFrame的布尔索引,选择了成交时间在2月1日至2月28日之间的数据。

  2. sales_1=(This_month["销量"]*This_month['单价']).sum():这行代码计算了本月的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic_1=This_month["订单ID"].drop_duplicates().count():这行代码计算了本月的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t_1=sales_1/traffic_1:这行代码计算了本月的客单价,即销售额除以客流量。

  5. print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_1,traffic_1,s_t_1)):这行代码将计算结果打印输出,格式化输出了本月的销售额、客流量和客单价,保留两位小数。

计算上月相关指标

# 计算上月相关指标
last_month=data[(data["成交时间"]>=datetime(2018,1,1))&(data["成交时间"]<=datetime(2018,1,31))]# 销售额计算
sales_2=(last_month["销量"]*last_month['单价']).sum()
# 客流量计算
traffic_2=last_month["订单ID"].drop_duplicates().count()
# 客单价计算
s_t_2=sales_2/traffic_2
print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_2,traffic_2,s_t_2))
  1. last_month=data[(data["成交时间"]>=datetime(2018,1,1))&(data["成交时间"]<=datetime(2018,1,31))]:这行代码根据成交时间筛选出了上月的订单数据。使用了DataFrame的布尔索引,选择了成交时间在1月1日至1月31日之间的数据。

  2. sales_2=(last_month["销量"]*last_month['单价']).sum():这行代码计算了上月的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic_2=last_month["订单ID"].drop_duplicates().count():这行代码计算了上月的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t_2=sales_2/traffic_2:这行代码计算了上月的客单价,即销售额除以客流量。

  5. print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_2,traffic_2,s_t_2)):这行代码将计算结果打印输出,格式化输出了上月的销售额、客流量和客单价,保留两位小数。

计算去年同期相关指标

# 计算去年同期相关指标
same_month=data[(data["成交时间"]>=datetime(2017,2,1))&(data["成交时间"]<=datetime(2017,2,28))]sales_3=(same_month["销量"]*same_month["单价"]).sum()traffic_3=same_month["订单ID"].drop_duplicates().count()
s_t_3=sales_3/traffic_3
print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_3,traffic_3,s_t_3))
  1. same_month=data[(data["成交时间"]>=datetime(2017,2,1))&(data["成交时间"]<=datetime(2017,2,28))]:这行代码根据成交时间筛选出了去年同期(2017年2月)的订单数据。使用了DataFrame的布尔索引,选择了成交时间在2017年2月1日至2017年2月28日之间的数据。

  2. sales_3=(same_month["销量"]*same_month["单价"]).sum():这行代码计算了去年同期的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic_3=same_month["订单ID"].drop_duplicates().count():这行代码计算了去年同期的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t_3=sales_3/traffic_3:这行代码计算了去年同期的客单价,即销售额除以客流量。

  5. print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_3,traffic_3,s_t_3)):这行代码将计算结果打印输出,格式化输出了去年同期的销售额、客流量和客单价,保留两位小数。

# 利用函数提高编码效率
def get_month_data(data):sale=(data["销量"]*data["单价"]).sum()traffic=data["订单ID"].drop_duplicates().count()s_t=sale/trafficreturn (sale,traffic,s_t)# 本月相关指数
sales_1,traffic_1,s_t_1=get_month_data(This_month)
print(sales_1,traffic_1,s_t_1)# 上月相关指数
sales_2,traffic_2,s_t_2=get_month_data(last_month)
print(sales_2,traffic_2,s_t_2)# 去年同期相关指数
sales_3,traffic_3,s_t_3=get_month_data(same_month)
print(sales_3,traffic_3,s_t_3)
  1. def get_month_data(data)::这行代码定义了一个名为 get_month_data() 的函数,它接受一个数据集 data 作为输入参数。

  2. sale=(data["销量"]*data["单价"]).sum():在函数内部,这行代码计算了给定数据的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic=data["订单ID"].drop_duplicates().count():这行代码计算了给定数据的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t=sale/traffic:这行代码计算了给定数据的客单价,即销售额除以客流量。

  5. return (sale,traffic,s_t):这行代码将销售额、客流量和客单价作为元组返回给调用方。

  6. sales_1,traffic_1,s_t_1=get_month_data(This_month):这行代码调用 get_month_data() 函数计算了本月的销售额、客流量和客单价,并将结果分别赋值给了 sales_1traffic_1s_t_1 变量。

  7. 类似地,sales_2,traffic_2,s_t_2=get_month_data(last_month)sales_3,traffic_3,s_t_3=get_month_data(same_month) 分别计算了上月和去年同期的相关指数。

  8. 最后,print(sales_1,traffic_1,s_t_1)print(sales_2,traffic_2,s_t_2)print(sales_3,traffic_3,s_t_3) 分别打印出了本月、上月和去年同期的销售额、客流量和客单价。

创建DataFrame 添加同比和环比字段

# 创建DataFrame
report=pd.DataFrame([[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]],columns=["本月累计","上月同期","去年同期"],index=["销售额","客流量","客单价"])
# print(report)
# 添加同比和环比字段
report["环比"]=report["本月累计"]/report["上月同期"]-1report["同比"]=report["本月累计"]/report["去年同期"]-1
  1. report=pd.DataFrame([[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]], columns=["本月累计","上月同期","去年同期"], index=["销售额","客流量","客单价"]):这行代码创建了一个DataFrame对象 report。其中:

    • [[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]]:是一个二维列表,包含了本月累计、上月同期和去年同期的销售额、客流量和客单价。
    • columns=["本月累计","上月同期","去年同期"]:指定了DataFrame的列标签,分别对应本月累计、上月同期和去年同期。
    • index=["销售额","客流量","客单价"]:指定了DataFrame的行标签,分别对应销售额、客流量和客单价。
  2. report["环比"]=report["本月累计"]/report["上月同期"]-1:这行代码计算了环比,即本月累计与上月同期的销售额、客流量和客单价的增长率。

  3. report["同比"]=report["本月累计"]/report["去年同期"]-1:这行代码计算了同比,即本月累计与去年同期的销售额、客流量和客单价的增长率。

# 查看报表
report
# 将结果导出本地
report.to_csv("order.csv",encoding="utf-8-sig")
http://www.khdw.cn/news/28351.html

相关文章:

  • 网站设计建设公司江阴网站优化公司
  • 专业提供网站建设服务公司色盲测试图数字
  • seo建站要求注册域名要钱吗
  • 怎么查网站是在哪里备案的跨境电商网站开发
  • 参与网站建设与维护的要求百度推广怎么做步骤
  • 北京门户企业网站建设电商推广联盟
  • 做黑网站赚钱吗网络营销的目标
  • 网站服务器租用恒创怎样在百度上推广
  • 如何用织梦猫做网站和后台网络广告策划书范文
  • 什么网站做电器出租网奇seo赚钱培训
  • 京东网站建设机构武汉百度推广代运营
  • 深圳免费网站设计精准广告投放
  • 深圳做网站案例活动软文怎么写
  • 做企业手机网站深圳市seo上词多少钱
  • 青岛网站定制如何推广好一个产品
  • 网站建设营销外包公司哪家好北京seo优化诊断
  • 网页设计类网站官网seo
  • 在线定制平台杭州seo网站排名
  • 网站关键词如何部署青岛seo推广专员
  • 网站开发与技术维护游戏优化大师有用吗
  • 关于网站建设live2500seo有名气的优化公司
  • 沈阳网站建设公司的公司网店培训班
  • 新兴网站建设大连网站制作
  • 网站开发需求说明书模板辅导机构
  • 网站如何做友情链接做网站建网站公司
  • 做淘宝客个人网站东莞网络推广
  • 想给孩子找点题做 都有什么网站佛山seo教程
  • 做抛物线的网站sem竞价教程
  • 怎么做律师事务所的网站百度知道问答
  • 哪个网站可以免费做电子请柬重庆关键词自然排名