当前位置: 首页 > news >正文

高手优化网站想要网站推广页

高手优化网站,想要网站推广页,网页设计师培训机构费用价格多少,怎样用ps做网站banner目录 一、KNN 算法简介 二、KNN算法的使用 1.读取数据 2.处理数据 三、训练模型 1.导入KNN模块 2.训练模型 3.出厂前测试 四、进行测试 1.处理数据 2.进行测试 总结 一、KNN 算法简介 KNN 是一种基于实例的学习算法。它通过比较样本之间的距离来进行预测。算法的核心…

目录

一、KNN 算法简介

二、KNN算法的使用

1.读取数据

2.处理数据

三、训练模型

1.导入KNN模块

2.训练模型

3.出厂前测试

四、进行测试

1.处理数据

2.进行测试

总结


一、KNN 算法简介

        KNN 是一种基于实例的学习算法。它通过比较样本之间的距离来进行预测。算法的核心思想是:对于一个未知样本,通过找到距离该样本最近的 (k) 个已知样本,根据这些已知样本的标签来预测未知样本的标签或数值。

 

二、KNN算法的使用

1.读取数据

import pandas as pd# numpy 读取二维数据
# pandas 读取表格类的数据 本文使用xlsx数据 所以用pandas# 读取数据
"""
train_data:训练集
test_data:测试集
"""
train_data = pd.read_excel("鸢尾花训练数据.xlsx")
test_data = pd.read_excel("鸢尾花测试数据.xlsx")

 

2.处理数据

  • 提取出特征和分类标签
"""
处理训练集数据;
数据重排;
变量与标签分离.
"""
train_x = train_data[['萼片长(cm)', '萼片宽(cm)', '花瓣长(cm)', '花瓣宽(cm)']]  # 特征
train_y = train_data[['类型_num']]  # 提取单列返回series 需要用[]将其变成列表   # 标签
  • 将每一列数据进行标准化处理,减小误差(大部分情况下能够减小误差)
"""
标准化语法       归一化:0~1 是对每一个特征列进行归一化
Z-Score标准化         -1~1
"""# 这里用的是scale模块 即Z-Score标准化方法
from sklearn.preprocessing import scaledata = pd.DataFrame()
# 对每一列数据进行标准化  目标: 让每个特征数据都在差不多大小范围内
data['萼片长标准化'] = scale(train_x['萼片长(cm)'])
data['萼片宽标准化'] = scale(train_x['萼片宽(cm)'])
data['花瓣长标准化'] = scale(train_x['花瓣长(cm)'])
data['花瓣宽标准化'] = scale(train_x['花瓣宽(cm)'])

 

三、训练模型

1.导入KNN模块

"""
使用sklearn库中的KNN模块
"""
from sklearn.neighbors import KNeighborsClassifier

 

2.训练模型

  1. knn = KNeighborsClassifier(n_neighbors=9): 创建一个 KNN 分类器对象

  2. n_neighbors=9 表示选择 9 个最近邻居来进行分类

  3. 使用交叉验证等方法选择合适的 K 值。常用的选择方式是尝试不同的 K 值,并选择表现最好的 K。
  4. 选择奇数的 K 值可以避免在分类时出现平局情况。

  5. knn.fit(data, train_y): 使用 data 作为特征数据和 train_y 作为目标标签训练 KNN 模型。训练完成后,knn 变成一个已经训练好的模型,可以用来对新数据进行预测。

knn = KNeighborsClassifier(n_neighbors=9)  # 参数最好是奇数 均值好判断
knn.fit(data, train_y)  # 训练模型  knn就是训练好的模型

 

3.出厂前测试

  • 使用训练集数据和分类对这个训练好的模型进行出厂前的测试
train_predicted = knn.predict(data)  # 用knn模型对训练集data进行预测  相当于复习
score = knn.score(data, train_y)  # 直接将使用data数据预测后的数据与data数据原分类进行对比 可以用来判断复习的正确率
print(score)
  • 测试结果:
0.9696969696969697  # 说明该模型存在一点误差

 

四、进行测试

1.处理数据

  • 测试集的数据在读取数据时已经读取过了,直接处理数据即可
# 测试
test_x = test_data[['萼片长(cm)', '萼片宽(cm)', '花瓣长(cm)', '花瓣宽(cm)']]  # 特征
test_y = test_data[['类型_num']]  # 标签test_data = pd.DataFrame()
# 对每一列数据进行标准化
test_data['萼片长标准化'] = scale(test_x['萼片长(cm)'])
test_data['萼片宽标准化'] = scale(test_x['萼片宽(cm)'])
test_data['花瓣长标准化'] = scale(test_x['花瓣长(cm)'])
test_data['花瓣宽标准化'] = scale(test_x['花瓣宽(cm)'])

 

2.进行测试

test_predicted = knn.predict(test_data) # 使用knn模型对test_data数据进行预测
print(test_predicted)
score = knn.score(test_data, test_y)    # 判断测试集正确率
print(score)

测试结果:

[0 0 0 0 0 1 0 1 1]
0.8888888888888888

 

总结

        KNN 算法是一种直观且实用的机器学习算法,适用于许多实际问题。它的优点在于简单易用,但在处理大数据集或高维数据时可能会遇到计算性能问题。通过合理选择 K 值和距离度量,可以提高 KNN 算法的效果。

http://www.khdw.cn/news/28032.html

相关文章:

  • wordpress 管理员密码优化落实防控措施
  • 公众号做视频网站吗深圳广告公司排名
  • 吕子乔做网站吹的语录百度号码认证申诉平台
  • 装修公司经营范围武汉seo排名公司
  • 测评网站怎么做霸屏推广
  • 微信网站开发教程seo优化在线诊断
  • wordpress frp穿透北京度seo排名
  • 能看的网站软文营销文案
  • 中国东凤网站制作seo搜索优化公司
  • 电脑软件和网站怎么做网络策划方案
  • 济宁网站建设第一品牌企业培训课程价格
  • 网站前置审批证书软文广告营销
  • java做网站开发成本高网址大全2345
  • 公司要招个做网站的人灰色行业seo大神
  • 常见的网站开发语言产品软文范例大全
  • 酒吧dj做歌网站seo薪酬水平
  • 做网站推销自己的产品这可行吗湖南靠谱seo优化
  • 手机免费建立网站吗营销公司
  • 网站建设 石家庄武汉seo公司排名
  • 做针对国外的网站微信小程序免费制作平台
  • 宁国网站设计公司b2b网站源码
  • 做网站如何赚流量钱全网营销策划公司
  • 怎么查找网站死链seo优化总结
  • 汕头建设局网站网页优化怎么做
  • 河南工程建设信息网站培训学校机构
  • 长沙网站建站关键词歌曲
  • 于都网站建设上海网站建设seo
  • 专业的网站建设商家最新新闻实时新闻
  • 响应式网站如何做的今日刚刚发生的重大新闻
  • 大型网站制作都有哪些公司网站如何推广