当前位置: 首页 > news >正文

域名备案是永久的吗优化设计六年级上册语文答案

域名备案是永久的吗,优化设计六年级上册语文答案,wordpress站点赏析,web前端开发自学网使用混合高斯模型 GMM,计算如下数据点的聚类过程: Datanp.array([1,2,6,7]) 均值初值为: μ1,μ21,5 权重初值为: w1,w20.5,0.5 方差: std1,std21,1 K2 10 次迭代后数据的聚类标签是多少? 采用python代码实现: from scipy import…
  1. 使用混合高斯模型 GMM,计算如下数据点的聚类过程:
    Data=np.array([1,2,6,7])
    均值初值为:
    μ1,μ2=1,5
    权重初值为:
    w1,w2=0.5,0.5
    方差:
    std1,std2=1,1
    K=2
    10 次迭代后数据的聚类标签是多少?

采用python代码实现:

 

from scipy import stats
import numpy as np#初始化数据
Data = np.array([1,2,6,7])
w1 , w2 = 0.5, 0.5
mu1 , mu2 = 1, 5
std1 , std2 = 1, 1n = len(Data) # 样本长度
zij=np.zeros([n,2])
for t in range(10):# E-step 依据当前参数,计算每个数据点属于每个子分布的概率z1_up = w1 * stats.norm(mu1 ,std1).pdf(Data)z2_up = w2*stats.norm(mu2 , std2).pdf(Data)z_all = (w1*stats.norm(mu1 ,std1).pdf(Data)+w2*stats.norm(mu2 ,std2).pdf(Data))+0.001rz1 = z1_up/z_all # 为甲分布的概率rz2 = z2_up/z_all # 为乙分布的概率# M-step 依据 E-step 的结果,更新每个子分布的参数。mu1 = np.sum(rz1*Data)/np.sum(rz1)mu2 = np.sum(rz2*Data)/np.sum(rz2)std1 = np.sum(rz1*np.square(Data-mu1))/np.sum(rz1)std2 = np.sum(rz2*np.square(Data-mu2))/np.sum(rz2)w1 = np.sum(rz1)/nw2 = np.sum(rz2)/n
for i in range(n):zij[i][0] = rz1[i]/(rz1[i]+rz2[i])zij[i][1] = rz2[i]/(rz1[i]+rz2[i])labels = np.argmax(zij, axis=1)#输出每一行的最大值,0或1  axis表示返回每一行中最大值所在列的索引
print(labels)

聚类标签输出结果:[0 0 1 1]

也就是说,10 次迭代后数据的聚类标签是1,2归为0类6,7归为1

附注:

如果 axis 为 None,那么 np.argmax 会将数组展平为一维,然后返回最大值的索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a)
3

如果 axis 为 0,那么 np.argmax 会沿着第一个维度(行)进行最大值的查找,返回每一列中最大值所在的行索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=0)
array([1, 1])

如果 axis 为 1,那么 np.argmax 会沿着第二个维度(列)进行最大值的查找,返回每一行中最大值所在的列索引。例如:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.argmax(a, axis=1)
array([1, 1])

在之前问题中,np.argmax([gamma1, gamma2], axis=0) 的意思是沿着第一个维度(gamma1 和 gamma2)进行最大值的查找,返回每个数据点属于哪个子分布的概率更大。

  1. 假设我们的数据集有 10 个 3 维数据, 需要用 PCA 降到 2 维特征。

    array([[ 3.25, 1.85, -1.29],[ 3.06, 1.25, -0.18],[ 3.46, 2.68, 0.64],[ 0.3 , -0.1 , -0.79],[ 0.83, -0.21, -0.88],[ 1.82, 0.99, 0.16],[ 2.78, 1.75, 0.51],[ 2.08, 1.5 , -1.06],[ 2.62, 1.23, 0.04],[ 0.83, -0.69, -0.61]])
    

    给出求解过程

解:

  1. 对所有的样本进行中心化:

x(i)=x(i)−1m∑j=1mx(j)

得到:

X=np.array([[ 1.147  0.825 -0.944][ 0.957  0.225  0.166][ 1.357  1.655  0.986][-1.803 -1.125 -0.444][-1.273 -1.235 -0.534][-0.283 -0.035  0.506][ 0.677  0.725  0.856][-0.023  0.475 -0.714][ 0.517  0.205  0.386][-1.273 -1.715 -0.264]])
  1. 计算样本的协方差矩阵 XXT
covM2=np.array([[1.26344556 1.08743889 0.32030889], 
[1.08743889 1.11076111 0.31611111],
[0.32030889 0.31611111 0.45449333]])
  1. 对矩阵 XXT 进行特征值分解

取出最大的 n′ 个特征值对应的特征向量 (w1,…,wn′), 将所有的特征向量标准化后,组成特征向量矩阵 W。

3.1求出特征值:

eigval=np.array([2.38219729 0.09637041 0.35013229])

3.2特征向量标准化:

eigvec=np.array([
[ 0.71144     0.67380165 -0.19961077],
[ 0.66498574 -0.73733944 -0.11884665],
[ 0.22725997  0.04818606  0.97264126]])

3.3取出特征值最大的2个特征值索引,也就是[2.38,0.35]对应的第1列和第3列:

indexes=[2 0]

3.4特征向量矩阵W:(对eigvec取了第3列和第1列)

W=np.array([
[-0.19961077  0.71144   ], 
[-0.11884665   0.66498574], 
[ 0.97264126   0.22725997]])
  1. 对样本集中的每一个样本 x(i) , 转化为新的样本 z(i)=WTx(i) ,得到输出样本集 D=(z(1),…z(m))

X:3×10 W:3×2 x⋅W=10×33×2 因为输入行列转置,结果是一致的

D=np.array([[-1.24517539  1.15010151][-0.05630956  0.86819503][ 0.49146125  2.29005381][ 0.06174799 -2.1317387 ][-0.1185103  -1.84827733][ 0.55280596 -0.10961848][ 0.6112806   1.15829407][-0.74632697  0.13724149][ 0.24787719  0.5918589 ][ 0.20114923 -2.10611029]])

代码:

import numpy as npX=np.array([[ 3.25, 1.85, -1.29],[ 3.06, 1.25, -0.18],[ 3.46, 2.68, 0.64],[ 0.3 , -0.1 , -0.79],[ 0.83, -0.21, -0.88],[ 1.82, 0.99, 0.16],[ 2.78, 1.75, 0.51],[ 2.08, 1.5 , -1.06],[ 2.62, 1.23, 0.04],[ 0.83, -0.69, -0.61]])def pca(X, d):# Centralization中心化means = np.mean(X, 0)X = X - meansprint(X)# Covariance Matrix 计算样本协方差矩阵M=len(X)X=np.mat(X)    covM2=np.cov(X.T)# 求出特征值,特征值分解eigval , eigvec = np.linalg.eig(covM2)indexes = np.argsort(eigval)[-d:]W = eigvec[:, indexes]return X*W
print(pca(X, 2))

附注:

np.cov()是一个用于计算协方差矩阵的函数,它可以接受一个或两个数组作为参数,返回一个二维数组,表示协方差矩阵。

协方差矩阵是一个对称矩阵,它的对角线元素表示各个变量的方差,非对角线元素表示两个变量之间的协方差。协方差反映了两个变量的线性相关程度,如果协方差为正,说明两个变量正相关;如果协方差为负,说明两个变量负相关;如果协方差为零,说明两个变量无相关性。

np.cov()的用法如下:

np.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

参数说明:

  • m: 一个一维或二维的数组,表示多个变量和观测值。如果是一维数组,表示一个变量的观测值;如果是二维数组,每一行表示一个变量,每一列表示一个观测值。
  • y: 可选参数,另一个一维或二维的数组,表示另一组变量和观测值,必须和m具有相同的形状。
  • rowvar: 可选参数,布尔值,默认为True。如果为True,表示每一行代表一个变量;如果为False,表示每一列代表一个变量。
  • bias: 可选参数,布尔值,默认为False。如果为False,表示计算无偏协方差(除以n-1);如果为True,表示计算有偏协方差(除以n)。
  • ddof: 可选参数,整数,默认为None。如果不为None,则覆盖由bias隐含的默认值。ddof=0表示计算有偏协方差;ddof=1表示计算无偏协方差。
  • fweights: 可选参数,一维数组或整数,默认为None。表示每次观测的频率权重。
  • aweights: 可选参数,一维数组,默认为None。表示每个变量的可靠性权重。

返回值:

  • 一个二维数组,表示协方差矩阵。

举例说明:

import numpy as np# 生成两组随机数据
x = np.random.randn(10)
y = np.random.randn(10)# 计算x和y的协方差矩阵
cov_xy = np.cov(x,y)
print(cov_xy)
# 输出:
[[ 0.8136679  -0.01594772][-0.01594772  0.84955963]]# 计算x和y的相关系数矩阵
corr_xy = np.corrcoef(x,y)
print(corr_xy)
# 输出:
[[ 1.         -0.01904402][-0.01904402  1.        ]]
http://www.khdw.cn/news/26536.html

相关文章:

  • wordpress 云播插件网络seo哈尔滨
  • 济南外贸网站建设公司排名百度竞价推广登录
  • wordpress隐藏统计图表福州短视频seo机会
  • 长沙国际会展中心疫情专业seo网络营销公司
  • 成都建设厅网站东莞网站制作的公司
  • 做网站好seo 推广教程
  • 怎么做网站页面代码搜索seo推广系统
  • 商丘做网站哪家好百度指数排行榜
  • 网站建设的公司哪家是上市公司怎么申请域名建立网站
  • 怎样做外国石雕产品网站怎么自己弄一个平台
  • 做网站的后台用什么开发比较好二级域名分发平台
  • wordpress前端上传头像百度seo在线优化
  • 网站收录提交工具广东新闻今日最新闻
  • 一个主机可以做几个网站域名在线优化seo
  • 用户搭建网站怎么恶意点击对手竞价
  • 帝国网站管理系统安装广告类的网站
  • lol视频网站源码北京seo供应商
  • 做商城网站建设哪家好网上怎么做广告
  • wordpress 架站关键词seo培训
  • 个人网站制作图片google seo实战教程
  • 品网站建设搜狗搜索排名优化
  • 微网站怎么开发互联网营销是什么
  • 南川集团网站建设seo站长工具综合查询
  • 网站大全软件seoul是哪个国家
  • 2018年做返利网站电商运营助理
  • 一站式网络营销百度广告运营
  • 新闻类wordpress模板下载seo教程seo官网优化详细方法
  • 网站开发拖延交货算诈骗吗公司网络推广服务
  • 百度提交网站入口seo费用价格
  • 深圳有几个区哪个区最繁华seo就业