当前位置: 首页 > news >正文

51源码之家厦门seo起梦网络科技

51源码之家,厦门seo起梦网络科技,苏州建交建设工程有限公司,中国做的网站国外能打开吗论文:https://arxiv.org/pdf/2112.10070.pdf 代码:https://github.com/ljynlp/W2NER 文章目录 W2NER介绍模型架构解码 源码介绍数据输入格式模型代码 参考资料 W2NER 介绍 W2NER模型,将NER任务转化预测word-word(备注&#xff…

论文:https://arxiv.org/pdf/2112.10070.pdf

代码:https://github.com/ljynlp/W2NER

文章目录

        • W2NER
          • 介绍
          • 模型架构
          • 解码
        • 源码介绍
          • 数据输入格式
          • 模型代码
        • 参考资料

W2NER

介绍

W2NER模型,将NER任务转化预测word-word(备注,中文是字-字),它能够统一处理扁平实体、重叠实体和非连续实体三种NER任务。

假定摄入的句子 X 由 N 个tokne或word组成, X = { x 1 , x 2 , . . . , x N } X = \{x_1,x_2,...,x_N\} X={x1,x2,...,xN},模型对每个word pair( x i , x j x_i,x_j xi,xj)中的两个word关系类别R进行预测,其中 R ∈ { N o n e , N N W , T H W − ∗ } R\in\{None,NNW,THW-^*\} R{None,NNW,THW}

  • None:两个word之间没有关系,不属于同一实体
  • NNW:即Next-Neighboring-Word,表示这两个word在同一个实体中相邻的位置
  • THW-*:即Tail-Head-Word-*,表示这两个word在同一个实体中,且分别是实体的结尾和开始。用来判断实体的类别和边界,其中*是实体类型

举一个具体的例子(蓝色箭头为NNW、红色箭头为THW-*):

上面的句子中由两个症状(symptom)实体,“aching in legs” 和 “aching in shoulders”,分别记作 e 1 , e 2 e_1,e_2 e1,e2;针对这两个实体,可以得到(b)中的word-word之间的关系,将句子按word维度构建二维矩阵为:

模型架构

W2NER模型主要是用来预测word pair中两个word之间的关系,也就是最右边的这个图。

接下来,让我们来看下数据流转:

  1. 输入的sentence经过EncoderLayer(BERT + BiLSTM)得到word_reps
word_reps = {batch_size,cur_batch_max_sentence_length,lstm_hidden_size}
  1. 将word_reps经过CLN(Conditional Layer Normalization)层,得到cln
cln = {batch_size,cur_batch_max_sentence_length,cur_batch_max_sentence_length,lstm_hidden_size}
  1. 将word pair的distance_embedding和 三角区域的region_embedding 和 word_reps按最后一个维度拼接,得到conv_inputs
conv_inputs = {batch_size, cur_batch_max_sentence_length, cur_batch_max_sentence_length, dist_emb_size + type_emb_size + lstm_hidden_size}
  1. 将conv_inputs经过卷积层(核为1*1的常规二维卷积 + 核为3*3的多层空洞卷积),得到conv_outputs
conv_outputs = {batch_size, output_height = cur_batch_max_sentence_length, output_width = cur_batch_max_sentence_length, conv_hidden_size * 3}
  1. 将conv_outputs经过CoPredictor(由Biaffine + MLP组成),得到output
output = {batch_size, cur_batch_max_sentence_length, cur_batch_max_sentence_length, label_num}

此时对output对最后一个维度取softmax,可得到word-word pair,再进行关系解码

解码

情况a(扁平实体)

	(B,A)的关系为THW,则表示B是实体的结尾,A是实体的开始;又(A,B)的关系为NNW,表示A和B是在同一个实体中的相邻位置,所以得到扁平实体“AB”同理可得扁平实体“DE”

情况b(重叠实体)

	(C,A)的关系为THW,则C是实体的结尾,A是实体的开始;又(A,B)和(B,C)的关系均为NNW,表示A和B是在同一个实体中的相邻位置,B和C是在同一个实体中的相邻位置,所以得到扁平实体“ABC”同理得到扁平实体“BC”

情况c(扁平实体 + 非连续实体)

	得到扁平实体“ABC”、“ABD”

情况d(扁平实体 + 非连续实体)

	得到非连续实体“ACD”、“BCE”

源码介绍

数据输入格式

B指batch_size,L指当前句子的长度

  • bert_inputs:bert模型的输入token_ids,也就是input_ids包含[CLS]和[SEP] 维度[B,L + 2]
  • grid_labels:标注数据实体构建的THW和NHW关系二维矩阵 维度[B,L,L]
  • grid_mask2d:网格mask信息,有效信息True,padding为False,维度[B,L,L]
  • dist_inputs:网格字符的相对位置信息,维度[B,L,L]
  • pieces2word:维度[B,L,L+2]
  • entity_text:用来标明实体信息,包括位置,类别。最后用来做评估使用

假设有句子:常建良,男

实体为:常建良(Name类型)

则pieces2word、pieces2word、grid_mask2d、grid_labels如下

id2index为

dis2idx = np.zeros((1000), dtype='int64')
dis2idx[1] = 1
dis2idx[2:] = 2
dis2idx[4:] = 3
dis2idx[8:] = 4
dis2idx[16:] = 5
dis2idx[32:] = 6
dis2idx[64:] = 7
dis2idx[128:] = 8
dis2idx[256:] = 9

模型代码

模型主类Model

class Model(BaseModel):def __init__(self, use_bert_last_4_layers=False):super().__init__()self.use_bert_last_4_layers = use_bert_last_4_layersself.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, # segment_vocab_size=0, output_all_encoded_layers = True if use_bert_last_4_layers else False)lstm_input_size = self.bert.configs['hidden_size']self.dis_embs = nn.Embedding(20, dist_emb_size)self.reg_embs = nn.Embedding(3, type_emb_size)self.encoder = nn.LSTM(lstm_input_size, lstm_hid_size // 2, num_layers=1, batch_first=True,bidirectional=True)conv_input_size = lstm_hid_size + dist_emb_size + type_emb_sizeself.convLayer = ConvolutionLayer(conv_input_size, conv_hid_size, dilation, conv_dropout)self.dropout = nn.Dropout(emb_dropout)self.predictor = CoPredictor(label_num, lstm_hid_size, biaffine_size,conv_hid_size * len(dilation), ffnn_hid_size, out_dropout)self.cln = LayerNorm(lstm_hid_size, conditional_size=lstm_hid_size)def forward(self, token_ids, pieces2word, dist_inputs, sent_length, grid_mask2d):bert_embs = self.bert([token_ids, torch.zeros_like(token_ids)])if self.use_bert_last_4_layers:bert_embs = torch.stack(bert_embs[-4:], dim=-1).mean(-1) # 取最后四层的均值length = pieces2word.size(1)min_value = torch.min(bert_embs).item()# 最大池化_bert_embs = bert_embs.unsqueeze(1).expand(-1, length, -1, -1)_bert_embs = torch.masked_fill(_bert_embs, pieces2word.eq(0).unsqueeze(-1), min_value)word_reps, _ = torch.max(_bert_embs, dim=2)# LSTMword_reps = self.dropout(word_reps)packed_embs = pack_padded_sequence(word_reps, sent_length.cpu(), batch_first=True, enforce_sorted=False)packed_outs, (hidden, _) = self.encoder(packed_embs)word_reps, _ = pad_packed_sequence(packed_outs, batch_first=True, total_length=sent_length.max())# 条件LayerNormcln = self.cln(word_reps.unsqueeze(2), word_reps)# concatdis_emb = self.dis_embs(dist_inputs)tril_mask = torch.tril(grid_mask2d.clone().long())reg_inputs = tril_mask + grid_mask2d.clone().long()reg_emb = self.reg_embs(reg_inputs)conv_inputs = torch.cat([dis_emb, reg_emb, cln], dim=-1)# 卷积层conv_inputs = torch.masked_fill(conv_inputs, grid_mask2d.eq(0).unsqueeze(-1), 0.0)conv_outputs = self.convLayer(conv_inputs)conv_outputs = torch.masked_fill(conv_outputs, grid_mask2d.eq(0).unsqueeze(-1), 0.0)# 输出层outputs = self.predictor(word_reps, word_reps, conv_outputs)return outputs

ConvolutionLayer类

   class ConvolutionLayer(nn.Module):'''卷积层'''def __init__(self, input_size, channels, dilation, dropout=0.1):super(ConvolutionLayer, self).__init__()self.base = nn.Sequential(nn.Dropout2d(dropout),nn.Conv2d(input_size, channels, kernel_size=1),nn.GELU(),)self.convs = nn.ModuleList([nn.Conv2d(channels, channels, kernel_size=3, groups=channels, dilation=d, padding=d) for d in dilation])def forward(self, x):x = x.permute(0, 3, 1, 2).contiguous()x = self.base(x)outputs = []for conv in self.convs:x = conv(x)x = F.gelu(x)outputs.append(x)outputs = torch.cat(outputs, dim=1)outputs = outputs.permute(0, 2, 3, 1).contiguous()return outputs

CoPredictor类

class CoPredictor(nn.Module):def __init__(self, cls_num, hid_size, biaffine_size, channels, ffnn_hid_size, dropout=0):super().__init__()self.mlp1 = MLP(n_in=hid_size, n_out=biaffine_size, dropout=dropout)self.mlp2 = MLP(n_in=hid_size, n_out=biaffine_size, dropout=dropout)self.biaffine = Biaffine(n_in=biaffine_size, n_out=cls_num, bias_x=True, bias_y=True)self.mlp_rel = MLP(channels, ffnn_hid_size, dropout=dropout)self.linear = nn.Linear(ffnn_hid_size, cls_num)self.dropout = nn.Dropout(dropout)def forward(self, x, y, z):h = self.dropout(self.mlp1(x))t = self.dropout(self.mlp2(y))o1 = self.biaffine(h, t)z = self.dropout(self.mlp_rel(z))o2 = self.linear(z)return o1 + o2

MLP类

class MLP(nn.Module):'''MLP全连接'''def __init__(self, n_in, n_out, dropout=0):super().__init__()self.linear = nn.Linear(n_in, n_out)self.activation = nn.GELU()self.dropout = nn.Dropout(dropout)def forward(self, x):x = self.dropout(x)x = self.linear(x)x = self.activation(x)return x

Biaffine类

class Biaffine(nn.Module):'''仿射变换'''def __init__(self, n_in, n_out=1, bias_x=True, bias_y=True):super(Biaffine, self).__init__()self.n_in = n_inself.n_out = n_outself.bias_x = bias_xself.bias_y = bias_yweight = torch.zeros((n_out, n_in + int(bias_x), n_in + int(bias_y)))nn.init.xavier_normal_(weight)self.weight = nn.Parameter(weight, requires_grad=True)def extra_repr(self):s = f"n_in={self.n_in}, n_out={self.n_out}"if self.bias_x:s += f", bias_x={self.bias_x}"if self.bias_y:s += f", bias_y={self.bias_y}"return sdef forward(self, x, y):if self.bias_x:x = torch.cat((x, torch.ones_like(x[..., :1])), -1)if self.bias_y:y = torch.cat((y, torch.ones_like(y[..., :1])), -1)# [batch_size, n_out, seq_len, seq_len]s = torch.einsum('bxi,oij,byj->boxy', x, self.weight, y)# remove dim 1 if n_out == 1s = s.permute(0, 2, 3, 1)return s

参考资料

https://blog.csdn.net/HUSTHY/article/details/123870372

https://zhuanlan.zhihu.com/p/546602235

参照代码:

https://github.com/Tongjilibo/bert4torch/blob/master/examples/sequence_labeling/task_sequence_labeling_ner_W2NER.py

http://www.khdw.cn/news/26167.html

相关文章:

  • wordpress数据查询网站谷歌浏览器 免费下载
  • 禅城网站建设公司网络营销推广实训报告
  • 网站建设福州公司培训课程有哪些
  • 网站建设名头足球排行榜前十名
  • 广州白云区网站开发福州seo关键字推广
  • 关于企业网站建设的请示软文营销常用的方式是什么
  • 宁波做网站价格网站搭建
  • ppt制作手机版衡阳seo优化
  • 百度推广是什么工作手机系统优化工具
  • 乒乓球网站怎么做网络推广怎么赚钱
  • 网站建设 银川曲靖新闻今日头条
  • 搭建一个网站 优帮云微指数官网
  • 做网站用旧域名好不好电商网站对比
  • 网站建设和维护做什么广东队对阵广州队
  • 拖拽做网站bt磁力在线种子搜索神器
  • 苏州专业网站建设设计公司哪家好网站排名优化公司哪家好
  • 网站设计接单如何开网店
  • 做直播网站前端谷歌搜索引擎363入口
  • 北京网站设计实力乐云践新seo软件下载
  • 南京电商网站建设免费推广的平台都有哪些
  • 常用seo站长工具百度推广怎么样
  • 公司建网站多少百度推广平台收费标准
  • 济南专门做网站的公司seo实战教程
  • 扬州大学第四届网站建设评比网络营销推广有效方式
  • 手机网站建设视频seo短视频网页入口引流下载
  • 阿里巴巴网站维护怎么做网站流量分析的指标有哪些
  • wordpress 方法简述如何优化网站的方法
  • 厦门网站seo外包苏州网站制作
  • 企业网站制作步骤北京网站优化公司哪家好
  • 商业空间设计案例ppt广州网站优化排名系统