当前位置: 首页 > news >正文

网络营销从网站建设开始百度推广信息流有用吗

网络营销从网站建设开始,百度推广信息流有用吗,wordpress termmeta,wordpress登陆不进去使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。 随着 DNN 和数据集规模的增加,训练这些模型的计算和内存需求也会增加。 这使得在计算资源有限的单台机器上训练这些模型变得困难甚至不可能。 使用大型数据集训练大型 DNN 的一些主要挑…

使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。 随着 DNN 和数据集规模的增加,训练这些模型的计算和内存需求也会增加。 这使得在计算资源有限的单台机器上训练这些模型变得困难甚至不可能。 使用大型数据集训练大型 DNN 的一些主要挑战包括:

  • 训练时间长:训练过程可能需要数周甚至数月才能完成,具体取决于模型的复杂性和数据集的大小。
  • 内存限制:大型 DNN 可能需要大量内存来存储训练期间的所有模型参数、梯度和中间激活。 这可能会导致内存不足错误并限制可在单台机器上训练的模型的大小。

为了应对这些挑战,已经开发了各种技术来扩大具有大型数据集的大型 DNN 的训练,包括模型并行性、数据并行性和混合并行性,以及硬件、软件和算法的优化。

在本文中我们将演示使用 PyTorch 的数据并行性和模型并行性。

我们所说的并行性一般是指在多个gpu,或多台机器上训练深度神经网络(dnn),以实现更少的训练时间。数据并行背后的基本思想是将训练数据分成更小的块,让每个GPU或机器处理一个单独的数据块。然后将每个节点的结果组合起来,用于更新模型参数。在数据并行中,模型体系结构在每个节点上是相同的,但模型参数在节点之间进行了分区。每个节点使用分配的数据块训练自己的本地模型,在每次训练迭代结束时,模型参数在所有节点之间同步。这个过程不断重复,直到模型收敛到一个令人满意的结果。

下面我们用用ResNet50和CIFAR10数据集来进行完整的代码示例:

在数据并行中,模型架构在每个节点上保持相同,但模型参数在节点之间进行了分区,每个节点使用分配的数据块训练自己的本地模型。

PyTorch的DistributedDataParallel 库可以进行跨节点的梯度和模型参数的高效通信和同步,实现分布式训练。本文提供了如何使用ResNet50和CIFAR10数据集使用PyTorch实现数据并行的示例,其中代码在多个gpu或机器上运行,每台机器处理训练数据的一个子集。训练过程使用PyTorch的DistributedDataParallel 库进行并行化。

导入必须要的库

 importosfromdatetimeimportdatetimefromtimeimporttimeimportargparseimporttorchvisionimporttorchvision.transformsastransformsimporttorchimporttorch.nnasnnimporttorch.distributedasdistfromtorch.nn.parallelimportDistributedDataParallel

接下来,我们将检查GPU

 importsubprocessresult=subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE)print(result.stdout.decode())

因为我们需要在多个服务器上运行,所以手动一个一个执行并不现实,所以需要有一个调度程序。这里我们使用SLURM文件来运行代码(slurm面向Linux和Unix类似内核的免费和开源工作调度程序),

 defmain():# get distributed configuration from Slurm environmentparser=argparse.ArgumentParser()parser.add_argument('-b', '--batch-size', default=128, type=int,help='batch size. it will be divided in mini-batch for each worker')parser.add_argument('-e','--epochs', default=2, type=int, metavar='N',help='number of total epochs to run')parser.add_argument('-c','--checkpoint', default=None, type=str,help='path to checkpoint to load')args=parser.parse_args()rank=int(os.environ['SLURM_PROCID'])local_rank=int(os.environ['SLURM_LOCALID'])size=int(os.environ['SLURM_NTASKS'])master_addr=os.environ["SLURM_SRUN_COMM_HOST"]port="29500"node_id=os.environ['SLURM_NODEID']ddp_arg= [rank, local_rank, size, master_addr, port, node_id]train(args, ddp_arg)     

然后我们使用DistributedDataParallel 库来执行分布式训练。

 deftrain(args, ddp_arg):rank, local_rank, size, MASTER_ADDR, port, NODE_ID=ddp_arg# display infoifrank==0:#print(">>> Training on ", len(hostnames), " nodes and ", size, " processes, master node is ", MASTER_ADDR)print(">>> Training on ", size, " GPUs, master node is ", MASTER_ADDR)#print("- Process {} corresponds to GPU {} of node {}".format(rank, local_rank, NODE_ID))print("- Process {} corresponds to GPU {} of node {}".format(rank, local_rank, NODE_ID))# configure distribution method: define address and port of the master node and initialise communication backend (NCCL)#dist.init_process_group(backend='nccl', init_method='env://', world_size=size, rank=rank)dist.init_process_group(backend='nccl',init_method='tcp://{}:{}'.format(MASTER_ADDR, port),world_size=size,rank=rank)# distribute modeltorch.cuda.set_device(local_rank)gpu=torch.device("cuda")#model = ResNet18(classes=10).to(gpu)model=torchvision.models.resnet50(pretrained=False).to(gpu)ddp_model=DistributedDataParallel(model, device_ids=[local_rank])ifargs.checkpointisnotNone:map_location= {'cuda:%d'%0: 'cuda:%d'%local_rank}ddp_model.load_state_dict(torch.load(args.checkpoint, map_location=map_location))# distribute batch size (mini-batch)batch_size=args.batch_sizebatch_size_per_gpu=batch_size//size# define loss function (criterion) and optimizercriterion=nn.CrossEntropyLoss()  optimizer=torch.optim.SGD(ddp_model.parameters(), 1e-4)transform_train=transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])# load data with distributed sampler#train_dataset = torchvision.datasets.CIFAR10(root='./data',#                                           train=True,#                                           transform=transform_train,#                                           download=False)# load data with distributed samplertrain_dataset=torchvision.datasets.CIFAR10(root='./data',train=True,transform=transform_train,download=False)train_sampler=torch.utils.data.distributed.DistributedSampler(train_dataset,num_replicas=size,rank=rank)train_loader=torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size_per_gpu,shuffle=False,num_workers=0,pin_memory=True,sampler=train_sampler)# training (timers and display handled by process 0)ifrank==0: start=datetime.now()         total_step=len(train_loader)forepochinrange(args.epochs):ifrank==0: start_dataload=time()fori, (images, labels) inenumerate(train_loader):# distribution of images and labels to all GPUsimages=images.to(gpu, non_blocking=True)labels=labels.to(gpu, non_blocking=True) ifrank==0: stop_dataload=time()ifrank==0: start_training=time()# forward passoutputs=ddp_model(images)loss=criterion(outputs, labels)# backward and optimizeoptimizer.zero_grad()loss.backward()optimizer.step()ifrank==0: stop_training=time() if (i+1) %10==0andrank==0:print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Time data load: {:.3f}ms, Time training: {:.3f}ms'.format(epoch+1, args.epochs,i+1, total_step, loss.item(), (stop_dataload-start_dataload)*1000,(stop_training-start_training)*1000))ifrank==0: start_dataload=time()#Save checkpoint at every end of epochifrank==0:torch.save(ddp_model.state_dict(), './checkpoint/{}GPU_{}epoch.checkpoint'.format(size, epoch+1))ifrank==0:print(">>> Training complete in: "+str(datetime.now() -start))if__name__=='__main__':main()

代码将数据和模型分割到多个gpu上,并以分布式的方式更新模型。下面是代码的一些解释:

train(args, ddp_arg)有两个参数,args和ddp_arg,其中args是传递给脚本的命令行参数,ddp_arg包含分布式训练相关参数。

rank, local_rank, size, MASTER_ADDR, port, NODE_ID = ddp_arg:解包ddp_arg中分布式训练相关参数。

如果rank为0,则打印当前使用的gpu数量和主节点IP地址信息。

dist.init_process_group(backend=‘nccl’, init_method=‘tcp://{}:{}’.format(MASTER_ADDR, port), world_size=size, rank=rank) :使用NCCL后端初始化分布式进程组。

torch.cuda.set_device(local_rank):为这个进程选择指定的GPU。

model = torchvision.models. ResNet50 (pretrained=False).to(gpu):从torchvision模型中加载ResNet50模型,并将其移动到指定的gpu。

ddp_model = DistributedDataParallel(model, device_ids=[local_rank]):将模型包装在DistributedDataParallel模块中,也就是说这样我们就可以进行分布式训练了

加载CIFAR-10数据集并应用数据增强转换。

train_sampler=torch.utils.data.distributed.DistributedSampler(train_dataset,num_replicas=size,rank=rank):创建一个DistributedSampler对象,将数据集分割到多个gpu上。

train_loader =torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size_per_gpu,shuffle=False,num_workers=0,pin_memory=True,sampler=train_sampler):创建一个DataLoader对象,数据将批量加载到模型中,这与我们平常训练的步骤是一致的只不过是增加了一个分布式的数据采样DistributedSampler

为指定的epoch数训练模型,以分布式的方式使用optimizer.step()更新权重。

rank0在每个轮次结束时保存一个检查点。

rank0每10个批次显示损失和训练时间。

结束训练时打印训练模型所花费的总时间也是在rank0上。

代码测试

在使用1个节点1/2/3/4个gpu, 2个节点6/8个gpu,每个节点3/4个gpu上进行了训练Cifar10上的Resnet50的测试如下图所示,每次测试的批处理大小保持不变。完成每项测试所花费的时间以秒为单位记录。随着使用的gpu数量的增加,完成测试所需的时间会减少。当使用8个gpu时,需要320秒才能完成,这是记录中最快的时间。这是肯定的,但是我们可以看到训练的速度并没有像GPU数量增长呈现线性的增长,这可能是因为Resnet50算是一个比较小的模型了,并不需要进行并行化训练。

在多个gpu上使用数据并行可以显著减少在给定数据集上训练深度神经网络(DNN)所需的时间。随着gpu数量的增加,完成训练过程所需的时间减少,这表明DNN可以更有效地并行训练。

这种方法在处理大型数据集或复杂的DNN架构时特别有用。通过利用多个gpu,可以加快训练过程,实现更快的模型迭代和实验。但是需要注意的是,通过Data Parallelism实现的性能提升可能会受到通信开销和GPU内存限制等因素的限制,需要仔细调优才能获得最佳结果。

https://avoid.overfit.cn/post/67095b9014cb40888238b84fea17e872

作者:Joseph El Kettaneh

http://www.khdw.cn/news/24714.html

相关文章:

  • 网上开店如何找货源搜索引擎优化的内容有哪些
  • 网站建设需求调研表市场推广外包团队
  • 东莞农村商业银行企业关键词优化最新报价
  • 哪个全球购网站做的好处长沙做优化的公司
  • wordpress 关闭访问seo建站工具
  • 市建委官方网站抖音关键词查询工具
  • 网站关闭流程网站免费高清素材软件
  • wordpress操作界面seo关键词是什么
  • 杭州 高端网站建设百度指数是干嘛的
  • 设计师分享网站ui设计培训班哪家好
  • 网站建设基本网络媒体
  • 网站做分布式部署体验营销是什么
  • 温州网站建设按效果付费的推广
  • 国土资源网站建设方案b2b是什么意思
  • 宠物商品销售网站开发背景友情链接交换要注意哪些问题
  • wordpress是全开源吗网站排名优化专业定制
  • 做外贸网站功能网络营销优化
  • 免费编程网课网站排名优化手机
  • 手机app网站建设深圳网站建设服务
  • 网站上线 备案网站运营推广选择乐云seo
  • 深圳和海枫建设集团有限公司网站深圳营销推广公司
  • 做电商网站就业岗位晋升营销网络推广
  • 东莞市官网网站建设哪家好抖音关键词排名查询
  • 国外做调查问卷的网站首页优化公司
  • 信用门户网站建设专家评价优化落实疫情防控新十条
  • 做城市门户网站怎么发展学开网店哪个培训机构好正规
  • 帝国cms做电影网站网络营销手段有哪些方式
  • 网站页面优化简单吗软文怎么写吸引人
  • 网站建设工作室北京seo优化排名推广
  • 网站开发设计培训长岭网站优化公司