当前位置: 首页 > news >正文

网站群系统哪里可以学seo课程

网站群系统,哪里可以学seo课程,建一个网站的手机电脑,wordpress批量爆破💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【WSN】基于蚁群算法的路由协议(最短路径)对节点能量的消耗研究是一个十分重要的课题。

在无蚁群算法(ACO)的情况下的无线传感器网络(WSN)中,当使用相同的路由协议(最短路径)时,节点能量会不断消耗,最终导致节点死亡。这是因为传感器节点在进行数据传输时,往往需要通过多个中继节点才能到达目的地,这些中继节点的数据转发会消耗大量的能量。而在没有ACO算法的情况下,网络中的节点并没有考虑到能量消耗的差异,因此无法做出针对性的路由选择。

而在应用了ACO步骤的WSN网络中,情况就不同了。同样是通过路由协议(最短路径)进行数据传输,但ACO分析了正在使用的路径的能量消耗情况,并根据能量消耗的评估结果来进行路由调整。这意味着在ACO算法的指导下,节点能够根据路由路径上的能量变化情况做出相应的决策。比如,如果某个路径的能量消耗较大,ACO可以选择其他能量消耗相对较小的路径,以减少节点的能量消耗。

通过引入ACO算法,WSN网络中的节点能够更加智能地选择路由路径,从而减少节点能量的消耗。这将延长整个网络的寿命,并提高网络的稳定性和性能。此外,ACO算法也可以根据网络的实际情况进行调整和优化,以更好地适应不同的应用场景和节点能量消耗的变化。

总而言之,通过研究基于蚁群算法的路由协议(最短路径)对节点能量的消耗,我们可以深入理解WSN网络中能量问题的关键因素,并为解决节点能量消耗过高的问题提供有效的方法。引入ACO算法可以使节点能够根据能量消耗情况智能地选择路由路径,从而优化能量分配,延长网络寿命,并提高网络的可靠性和性能。

📚2 运行结果

 持续运行中。

部分代码:

%% Main configuration values for this simulationdataset.nodeNo = 9; %Number of nodes
ACOnodeNo = dataset.nodeNo;
dataset.nodePosition(1,:) = [1 50 50]; %(Sender node fixed position)
dataset.nodePosition(2,:) = [2 900 900]; %(Receiver node fixed position)
dataset.NeighborsNo = 5;
dataset.range = 500; %Tolerance distance to became neighbor of one node (Euclidean distance based)
dataset.atenuationFactor = 1.8; %Atenuation factor in freespace - ranges from 1.8 to 4 due environment
dataset.minEnergy = 80; % Mw - Miliwatts (70% energy)
dataset.maxEnergy = 100; % Mw - Miliwatts (Full energy (100%) - 1 mAh charge capacity within 1 Volt energy)
dataset.energyconsumptionperCicle = 0.85;
dataset.energyrecoveryperCicle = 0.2;
dataset.minenergyfactor = 0.18;
dataset.maxenergyfactor = 0.2;
STenergy=inf; 
packet=0;
iterationcounter=1;
plotgraphs=1; %Choose 1 for "yes" or 0 for "no" if you want to plot graphs or no (Better performance if no)
reprodutibily = 0; %1 = yes (always generate same random numbers) (0) for no reprodutibility (Different random numbers every code execution);% Node position sortition
if reprodutibily == 0rng('shuffle');
elserng('default');
end
for a = 3 : dataset.nodeNodataset.nodeId = a; garbage.x = randi([1 900]); %Xpos sortitiongarbage.y = randi([1 900]); %Ypos sortitiondataset.nodePosition(a,:) = [dataset.nodeId garbage.x garbage.y]; %NodeID, X and Y position into nodePosition tableend% Euclidean Distance calc from one node to all othersfor i = 1 : dataset.nodeNofor j = 1: dataset.nodeNogarbage.x1 = dataset.nodePosition(i,2); garbage.x2 = dataset.nodePosition(j,2); garbage.y1 = dataset.nodePosition(i,3); garbage.y2 = dataset.nodePosition(j,3);dataset.euclidiana(i,j) = sqrt(  (garbage.x1 - garbage.x2) ^2 + (garbage.y1 - garbage.y2)^2  ); end
end% Edges matrix definition due "range" variable valuedataset.weights = lt(dataset.euclidiana,dataset.range);% Graph constructionG=graph(dataset.weights,'omitselfloops'); %Graph creation based on adjacency matrix (Edges matrix) built above% Euclidean distance extraction for all existente end-to-end formed by
% "distance tolerance" (range variable value)

%% Main configuration values for this simulation

dataset.nodeNo = 9; %Number of nodes
ACOnodeNo = dataset.nodeNo;
dataset.nodePosition(1,:) = [1 50 50]; %(Sender node fixed position)
dataset.nodePosition(2,:) = [2 900 900]; %(Receiver node fixed position)
dataset.NeighborsNo = 5;
dataset.range = 500; %Tolerance distance to became neighbor of one node (Euclidean distance based)
dataset.atenuationFactor = 1.8; %Atenuation factor in freespace - ranges from 1.8 to 4 due environment
dataset.minEnergy = 80; % Mw - Miliwatts (70% energy)
dataset.maxEnergy = 100; % Mw - Miliwatts (Full energy (100%) - 1 mAh charge capacity within 1 Volt energy)
dataset.energyconsumptionperCicle = 0.85;
dataset.energyrecoveryperCicle = 0.2;
dataset.minenergyfactor = 0.18;
dataset.maxenergyfactor = 0.2;
STenergy=inf; 
packet=0;
iterationcounter=1;
plotgraphs=1; %Choose 1 for "yes" or 0 for "no" if you want to plot graphs or no (Better performance if no)
reprodutibily = 0; %1 = yes (always generate same random numbers) (0) for no reprodutibility (Different random numbers every code execution);


% Node position sortition
if reprodutibily == 0
    rng('shuffle');
else
    rng('default');
end
for a = 3 : dataset.nodeNo
    
   dataset.nodeId = a; 
   garbage.x = randi([1 900]); %Xpos sortition
   garbage.y = randi([1 900]); %Ypos sortition
   dataset.nodePosition(a,:) = [dataset.nodeId garbage.x garbage.y]; %NodeID, X and Y position into nodePosition table
   
end

% Euclidean Distance calc from one node to all others

for i = 1 : dataset.nodeNo
    for j = 1: dataset.nodeNo
        garbage.x1 = dataset.nodePosition(i,2); 
        garbage.x2 = dataset.nodePosition(j,2); 
        garbage.y1 = dataset.nodePosition(i,3); 
        garbage.y2 = dataset.nodePosition(j,3);
        
        dataset.euclidiana(i,j) = sqrt(  (garbage.x1 - garbage.x2) ^2 + (garbage.y1 - garbage.y2)^2  ); 
        
    end
end

% Edges matrix definition due "range" variable value

dataset.weights = lt(dataset.euclidiana,dataset.range);

% Graph construction

G=graph(dataset.weights,'omitselfloops'); %Graph creation based on adjacency matrix (Edges matrix) built above

% Euclidean distance extraction for all existente end-to-end formed by
% "distance tolerance" (range variable value)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]廖明华,张华,谢建全.基于蚁群算法的WSN能量预测路由协议[J].计算机工程, 2012, 38(3):88-90.DOI:10.3969/j.issn.1000-3428.2012.03.030.

[1]米奕萍.基于改进型蚁群算法的WSN路由算法的研究[D].中北大学[2023-09-19].DOI:CNKI:CDMD:2.1012.336755.

🌈4 Matlab代码实现

http://www.khdw.cn/news/24652.html

相关文章:

  • 在线商城网站模板东莞网站推广策划
  • 药品招采网站建设费用域名ip查询查网址
  • 杭州网站建设培训承德网络推广
  • 郑州小型网站制作公司中国最好的网络营销公司
  • 个人如何建设网站优化设计三年级上册语文答案
  • 网站建设的想法和意见网络营销心得体会
  • 将公司网站建设成广告收益平台
  • 020网站模板友情链接查询结果
  • 如何把网站加入白名单seo如何优化关键词排名
  • 做网站需要哪些准备北京口碑最好的教育机构
  • 自己怎么做企业网站建设网络服务提供者
  • 网站推广究竟应该怎么做网络营销顾问是做什么的
  • 个人做外贸商城网站哈尔滨百度推广联系人
  • 网站seo推广seo教程莆田seo
  • 全国认可企业信息查询平台平台优化是什么意思
  • 蓝色企业网站模板网站排名优化系统
  • 广安网站建设兼职怎样做线上销售
  • 网站需要备案吗seo工具下载
  • 5g创业网站建设培训方案怎么做
  • 网站建设平台讯息广州seo教程
  • 大学生可做的网站主题搜索引擎优化的主要特征
  • 我想做个门户网站怎么做网络推广
  • 网站空间怎么进深圳品牌seo
  • 设计本app下载沈阳seo公司
  • 小松建设的官方网站西安网站seo公司
  • 智盈中心网站建设北京网站seo
  • 怎么做网站劳务中介厦门seo顾问
  • 网站悬浮图片代码软文营销经典案例
  • 小红书怎么推广自己的产品整站优化
  • 网页设计代码html软件合肥全网优化